forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathItertools.cpp
75 lines (65 loc) · 2.13 KB
/
Itertools.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/TensorOperators.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/arange.h>
#include <ATen/ops/cartesian_prod_native.h>
#include <ATen/ops/combinations_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/full.h>
#include <ATen/ops/meshgrid.h>
#include <ATen/ops/stack.h>
#endif
#include <vector>
namespace {
using namespace at;
Tensor _triu_mask(int64_t n, int64_t dims, bool diagonal, TensorOptions opt) {
// get a mask that has value 1 whose indices satisfies i < j < k < ...
// or i <= j <= k <= ... (depending on diagonal)
Tensor range = at::arange(n, opt.dtype(kLong));
std::vector<Tensor> index_grids = at::meshgrid(std::vector<Tensor>(dims, range), "ij");
Tensor mask = at::full(index_grids[0].sizes(), true, opt.dtype(kBool));
if(diagonal) {
for(int64_t i = 0; i < dims - 1; i++) {
mask *= index_grids[i] <= index_grids[i+1];
}
} else {
for(int64_t i = 0; i < dims - 1; i++) {
mask *= index_grids[i] < index_grids[i+1];
}
}
return mask;
}
} // namespace
namespace at::native {
Tensor cartesian_prod(TensorList tensors) {
for(const Tensor &t : tensors) {
TORCH_CHECK(t.dim() == 1, "Expect a 1D vector, but got shape ", t.sizes());
}
if (tensors.size() == 1) {
return tensors[0];
}
std::vector<Tensor> grids = at::meshgrid(tensors, "ij");
for(Tensor &t : grids) {
t = t.flatten();
}
return at::stack(grids, 1);
}
Tensor combinations(const Tensor& self, int64_t r, bool with_replacement) {
TORCH_CHECK(self.dim() == 1, "Expect a 1D vector, but got shape ", self.sizes());
TORCH_CHECK(r >= 0, "Expect a non-negative number, but got ", r);
if (r == 0) {
return at::empty({0}, self.options());
}
int64_t num_elements = self.numel();
std::vector<Tensor> grids = at::meshgrid(std::vector<Tensor>(r, self), "ij");
Tensor mask = _triu_mask(num_elements, r, with_replacement, self.options());
for(Tensor &t : grids) {
t = t.masked_select(mask);
}
return at::stack(grids, 1);
}
} // namespace at::native