forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Bucketization.cpp
246 lines (220 loc) · 10.3 KB
/
Bucketization.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/native/BucketizationUtils.h>
#include <ATen/native/Resize.h>
#include <c10/util/irange.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/empty.h>
#include <ATen/ops/bucketize_native.h>
#include <ATen/ops/searchsorted_native.h>
#endif
/* Implement a numpy like searchsorted and a TF like bucketize function running on cpu
*
* - torch.searchsorted(sorted_sequence, values, right=False, side='left', out_int32=False, sorter=None)
* sorted_sequence - N*D or 1D (apply to all values) tensor containing sorted sequences in last dimension
* values - N*D tensor or a Scalar (when sorted_sequence is 1D) containing the search values
* right - corresponding to lower bound if False and upper bound if True
* side - (preferred to right) corresponding to lower bound if 'left' and upper bound if 'right'
* out_int32 - the output tensor is int64_t type if False and int(32bit normally) type if True.
* sorter - if provided, sorted_sequence may not be sorted and the sorted order is given by this tensor
*
* - torch.bucketize(values, boundaries, right=False, out_int32=False)
* values - N*D tensor or a Scalar containing the search value
* boundaries - 1D tensor containing a sorted sequences
* right - corresponding to lower bound if False and upper bound if True
* out_int32 - the output tensor is int64_t type if False and int(32bit normally) type if True.
*
* - Restrictions are defined in searchsorted_pre_check()
*/
namespace at::native {
namespace {
// minimal size for searchsorted_cpu_contiguous to run parallel (multithread)
constexpr int64_t SEARCHSORTED_GRAIN_SIZE = 200;
// customized lower_bound func to ensure the low bound of 'nan', 'inf' etc. be the end of boundary
// and we can properly handle a sorter argument
// std::lower_bound can not be used here since its customized comparator need strict weak ordering
// and the customized comparators require both arguments to have the same type, which wouldn't
// happen when comparing val of input_t to an indexer value from sorter of int64
template<typename input_t>
int64_t cus_lower_bound(int64_t start, int64_t end, const input_t val, const input_t* bd, const int64_t* sort) {
// sorter gives relative ordering for ND tensors, so we need to save and add the non-updated start as an offset
// i.e. the second row of a 3x3 tensors starts at element 3 but sorter's second row only contains 0, 1, or 2
const int64_t orig_start = start;
while (start < end) {
const int64_t mid = start + ((end - start) >> 1);
const input_t mid_val = sort ? bd[sort[mid] + orig_start] : bd[mid];
if (!(mid_val >= val)) {
start = mid + 1;
}
else {
end = mid;
}
}
return start;
}
// customized upper_bound func to ensure we can properly handle a sorter argument
// std::upper_bound can not be used here since its customized comparator requires both arguments to have the
// same type, which wouldn't happen when comparing val of input_t to an indexer value from sorter of int64
template<typename input_t>
int64_t cus_upper_bound(int64_t start, int64_t end, const input_t val, const input_t* bd, const int64_t* sort) {
// sorter gives relative ordering for ND tensors, so we need to save and add the non-updated start as an offset
// i.e. the second row of a 3x3 tensors starts at element 3 but sorter's second row only contains 0, 1, or 2
const int64_t orig_start = start;
while (start < end) {
const int64_t mid = start + ((end - start) >> 1);
const input_t mid_val = sort ? bd[sort[mid] + orig_start] : bd[mid];
if (!(mid_val > val)) {
start = mid + 1;
}
else {
end = mid;
}
}
return start;
}
template<typename input_t, typename output_t>
void searchsorted_cpu_contiguous(Tensor& result, const Tensor& input, const Tensor& boundaries, const bool& right, const Tensor& sorter) {
int64_t numel_in = input.numel();
bool is_scalar_input = input.dim() == 0 && numel_in == 1;
// inner most dim size of input and boundaries
int64_t idim_in = is_scalar_input ? 1 : input.sizes().back();
int64_t idim_bd = boundaries.sizes().back();
const input_t *data_in = input.data_ptr<input_t>();
const input_t *data_bd = boundaries.data_ptr<input_t>();
const int64_t *data_st = sorter.defined() ? sorter.data_ptr<int64_t>() : nullptr;
output_t *data_out = result.data_ptr<output_t>();
bool is_1d_boundaries = boundaries.dim() == 1;
at::parallel_for(0, numel_in, SEARCHSORTED_GRAIN_SIZE, [&](int64_t start, int64_t end) {
for (const auto i : c10::irange(start, end)) {
// If boundaries tensor is 1d, we always search the entire boundary tensor
int64_t start_bd = is_1d_boundaries ? 0 : i / idim_in * idim_bd;
int64_t end_bd = start_bd + idim_bd;
int64_t pos = !right ?
cus_lower_bound(start_bd, end_bd, data_in[i], data_bd, data_st) - start_bd :
cus_upper_bound(start_bd, end_bd, data_in[i], data_bd, data_st) - start_bd;
// type conversion might happen here
data_out[i] = pos;
}
});
}
void dispatch(Tensor& result, const Tensor& input, const Tensor& boundaries, bool out_int32, bool right, const Tensor& sorter) {
if (!out_int32) {
AT_DISPATCH_ALL_TYPES_AND2(
ScalarType::Half,
ScalarType::BFloat16,
input.scalar_type(),
"searchsorted_out_cpu",
[&] {
searchsorted_cpu_contiguous<scalar_t, int64_t>(
result, input, boundaries, right, sorter);
});
}
else {
AT_DISPATCH_ALL_TYPES_AND2(
ScalarType::Half,
ScalarType::BFloat16,
input.scalar_type(),
"searchsorted_out_cpu",
[&] {
searchsorted_cpu_contiguous<scalar_t, int>(
result, input, boundaries, right, sorter);
});
}
}
}
Tensor& searchsorted_out_cpu(
const Tensor& sorted_sequence,
const Tensor& self,
bool out_int32,
bool right,
const c10::optional<c10::string_view> side_opt,
const c10::optional<Tensor>& sorter_opt,
Tensor& result) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> sorter_maybe_owned = at::borrow_from_optional_tensor(sorter_opt);
const Tensor& sorter = *sorter_maybe_owned;
searchsorted_pre_check(sorted_sequence, self, result, out_int32, right, side_opt, sorter);
resize_output(result, self.sizes());
// we have two inputs to set right, pre_check checks that they aren't set to opposites
bool is_right = side_opt ? *side_opt == "right" : right;
if (self.numel() == 0) {
return result;
}
// for non-contiguous result tensors, we write the output to a contiguous copy so we can later copy back, maintaing the original result tensor
Tensor out = result;
if (!result.is_contiguous()) {
out = result.contiguous();
}
if (sorted_sequence.is_contiguous() && self.is_contiguous() && sorted_sequence.dtype() == self.dtype() && sorter.is_contiguous()) {
dispatch(out, self, sorted_sequence, out_int32, is_right, sorter);
}
else {
Tensor trimmed_input;
Tensor trimmed_boundaries;
Tensor trimmed_sorter;
searchsorted_maybe_trim_input_tensors(trimmed_input, trimmed_boundaries, trimmed_sorter, self, sorted_sequence, sorter);
const Tensor& final_input = trimmed_input.defined() ? trimmed_input : self;
const Tensor& final_boundaries = trimmed_boundaries.defined() ? trimmed_boundaries : sorted_sequence;
const Tensor& final_sorter = trimmed_sorter.defined() ? trimmed_sorter : sorter;
dispatch(out, final_input, final_boundaries, out_int32, is_right, final_sorter);
}
// if result is non-contiguous, we wrote the answer to a copied version, so we copy back to the original result tensor
if (!result.is_contiguous()) {
result.copy_(out);
}
return result;
}
Tensor& searchsorted_out_cpu(
const Tensor& sorted_sequence,
const Scalar& self,
bool out_int32,
bool right,
const c10::optional<c10::string_view> side_opt,
const c10::optional<Tensor>& sorter_opt,
Tensor& result) {
const Tensor& scalar_tensor = searchsorted_scalar_tensor(self, sorted_sequence.device());
return searchsorted_out_cpu(sorted_sequence, scalar_tensor, out_int32, right, side_opt, sorter_opt, result);
}
Tensor searchsorted_cpu(
const Tensor& sorted_sequence,
const Tensor& self,
bool out_int32,
bool right,
const c10::optional<c10::string_view> side_opt,
const c10::optional<Tensor>& sorter_opt) {
ScalarType scalar_type = out_int32 ? ScalarType::Int : ScalarType::Long;
c10::TensorOptions options = TensorOptions().device(self.options().device()).dtype(scalar_type);
Tensor result = at::empty({0}, options, MemoryFormat::Contiguous);
at::native::searchsorted_out_cpu(sorted_sequence, self, out_int32, right, side_opt, sorter_opt, result);
return result;
}
Tensor searchsorted_cpu(
const Tensor& sorted_sequence,
const Scalar& self,
bool out_int32,
bool right,
const c10::optional<c10::string_view> side_opt,
const c10::optional<Tensor>& sorter_opt) {
const Tensor& scalar_tensor = searchsorted_scalar_tensor(self, sorted_sequence.device());
return searchsorted_cpu(sorted_sequence, scalar_tensor, out_int32, right, side_opt, sorter_opt);
}
Tensor& bucketize_out_cpu(const Tensor& self, const Tensor& boundaries, bool out_int32, bool right, Tensor& result) {
TORCH_CHECK(boundaries.dim() == 1, "boundaries tensor must be 1 dimension, but got dim(", boundaries.dim(), ")");
at::native::searchsorted_out_cpu(boundaries, self, out_int32, right, nullopt, nullopt, result);
return result;
}
Tensor bucketize_cpu(const Tensor& self, const Tensor& boundaries, bool out_int32, bool right) {
ScalarType scalar_type = out_int32 ? ScalarType::Int : ScalarType::Long;
c10::TensorOptions options = TensorOptions().device(self.options().device()).dtype(scalar_type);
Tensor result = at::empty({0}, options, MemoryFormat::Contiguous);
at::native::bucketize_out_cpu(self, boundaries, out_int32, right, result);
return result;
}
Tensor bucketize_cpu(const Scalar& self, const Tensor& boundaries, bool out_int32, bool right) {
return bucketize_cpu(searchsorted_scalar_tensor(self, boundaries.device()), boundaries, out_int32, right);
}
} // namespace at::native