-
Notifications
You must be signed in to change notification settings - Fork 3
/
test.py
126 lines (100 loc) · 4.19 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import StepLR, OneCycleLR, MultiStepLR
import time
from tqdm import tqdm
from loguru import logger
from args import args
from model import ODEGCN
from utils import generate_dataset, read_data, get_normalized_adj
from eval import masked_mae_np, masked_mape_np, masked_rmse_np
def logcosh(true, pred):
loss = torch.log(torch.cosh(pred - true))
return torch.mean(loss)
def train(loader, model, optimizer, criterion, std, mean, device):
batch_rmse_loss = 0
batch_mae_loss = 0
batch_mape_loss = 0
batch_loss = 0
for idx, (inputs, targets) in enumerate(tqdm(loader)):
model.train()
optimizer.zero_grad()
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs) * std + mean
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
out_unnorm = outputs.detach().cpu().numpy()
target_unnorm = targets.detach().cpu().numpy()
mae_loss = masked_mae_np(target_unnorm, out_unnorm, 0.0)
rmse_loss = masked_rmse_np(target_unnorm, out_unnorm, 0.0)
mape_loss = masked_mape_np(target_unnorm, out_unnorm, 0.0)
batch_rmse_loss += rmse_loss
batch_mae_loss += mae_loss
batch_mape_loss += mape_loss
batch_loss += loss.detach().cpu().item()
return batch_loss / (idx + 1), batch_rmse_loss / (idx + 1), batch_mae_loss / (idx + 1), batch_mape_loss / (idx + 1)
@torch.no_grad()
def eval(loader, model, std, mean, device):
batch_rmse_loss = 0
batch_mae_loss = 0
batch_mape_loss = 0
for idx, (inputs, targets) in enumerate(tqdm(loader)):
model.eval()
inputs = inputs.to(device)
targets = targets.to(device)
output = model(inputs)
out_unnorm = output.detach().cpu().numpy() * std + mean
target_unnorm = targets.detach().cpu().numpy()
mae_loss = masked_mae_np(target_unnorm, out_unnorm, 0.0)
rmse_loss = masked_rmse_np(target_unnorm, out_unnorm, 0.0)
mape_loss = masked_mape_np(target_unnorm, out_unnorm, 0.0)
batch_rmse_loss += rmse_loss
batch_mae_loss += mae_loss
batch_mape_loss += mape_loss
return batch_rmse_loss / (idx + 1), batch_mae_loss / (idx + 1), batch_mape_loss / (idx + 1)
def main(args):
# random seed
# seed = 2
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
device = torch.device('cuda:' + str(args.num_gpu)) if torch.cuda.is_available() else torch.device('cpu')
if args.log:
logger.add('log_{time}.log')
options = vars(args)
if args.log:
logger.info(options)
else:
print(options)
data, mean, std, dtw_matrix, sp_matrix = read_data(args)
train_loader, valid_loader, test_loader, train_mean, train_std, val_mean, val_std, test_mean, test_std = generate_dataset(
data, args)
print('mean,std: ', train_mean, train_std, val_mean, val_std)
A_sp_wave = get_normalized_adj(sp_matrix).to(device)
A_se_wave = get_normalized_adj(dtw_matrix).to(device)
net = ODEGCN(num_nodes=data.shape[1],
num_features=data.shape[2],
num_timesteps_input=args.his_length,
num_timesteps_output=args.pred_length,
A_sp_hat=A_sp_wave,
A_se_hat=A_se_wave)
net = net.to(device)
lr = args.lr
optimizer = torch.optim.AdamW(net.parameters(), lr=lr)
criterion = nn.SmoothL1Loss()
scheduler = MultiStepLR(optimizer=optimizer,
milestones=args.lr_decay_steps,
gamma=args.lr_decay_rate)
val_mape_min = float('inf')
wait=0
net.load_state_dict(torch.load('best/pems03/epoch_48_15.99_best_model.pth'))
test_rmse, test_mae, test_mape = eval(test_loader, net, test_std, test_mean, device)
print(f'##on test data## rmse loss: {test_rmse}, mae loss: {test_mae}, mape loss: {test_mape}')
if __name__ == '__main__':
main(args)