Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: qat test #956

Merged
merged 3 commits into from
Dec 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 0 additions & 3 deletions tests/data/torch/mnist_2b_s1_1.zip

This file was deleted.

3 changes: 0 additions & 3 deletions tests/data/torch/mnist_test_batch.zip

This file was deleted.

109 changes: 0 additions & 109 deletions tests/torch/test_compile_torch.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,13 @@
"""Tests for the torch to numpy module."""

# pylint: disable=too-many-lines
import io
import tempfile
import zipfile
from functools import partial
from inspect import signature
from pathlib import Path

import numpy
import onnx
import onnxruntime as ort
import pytest
import torch
import torch.quantization
Expand Down Expand Up @@ -808,112 +805,6 @@ def test_compile_where_net(default_configuration, check_is_good_execution_for_cm
numpy.testing.assert_allclose(torch_output, quantized_output, rtol=1e-2, atol=1e-2)


@pytest.mark.parametrize("verbose", [True, False], ids=["with_verbose", "without_verbose"])
# pylint: disable-next=too-many-locals
def test_pretrained_mnist_qat(
default_configuration,
check_accuracy,
verbose,
check_graph_output_has_no_tlu,
check_is_good_execution_for_cml_vs_circuit,
is_weekly_option,
):
"""Load a QAT MNIST model and confirm we get the same results in FHE simulation as with ONNX."""
if not is_weekly_option:
pytest.skip("Tests too long")

onnx_file_path = "tests/data/torch/mnist_2b_s1_1.zip"
mnist_test_path = "tests/data/torch/mnist_test_batch.zip"

# Load ONNX model from zip file
with zipfile.ZipFile(onnx_file_path, "r") as archive_model:
onnx_model_serialized = io.BytesIO(archive_model.read("mnist_2b_s1_1.onnx")).read()
onnx_model = onnx.load_model_from_string(onnx_model_serialized)

onnx.checker.check_model(onnx_model)

# Load test data and ground truth from zip file
with zipfile.ZipFile(mnist_test_path, "r") as archive_data:
mnist_data = numpy.load(
io.BytesIO(archive_data.read("mnist_test_batch.npy")), allow_pickle=True
).item()

# Get the test data
inputset = mnist_data["test_data"]

# Run through ONNX runtime and collect results
ort_session = ort.InferenceSession(onnx_model_serialized)

onnx_results = numpy.zeros((inputset.shape[0],), dtype=numpy.int64)
for i, x_test in enumerate(inputset):
onnx_outputs = ort_session.run(
None,
{onnx_model.graph.input[0].name: x_test.reshape(1, -1)},
)
onnx_results[i] = numpy.argmax(onnx_outputs[0])

# Compile to Concrete ML in FHE simulation mode, with a high bit-width
n_bits = {
"model_inputs": 16,
"op_weights": 2,
"op_inputs": 2,
"model_outputs": 16,
}

quantized_numpy_module = compile_onnx_model(
onnx_model,
inputset,
configuration=default_configuration,
n_bits=n_bits,
verbose=verbose,
)

quantized_numpy_module.check_model_is_compiled()

check_is_good_execution_for_cml_vs_circuit(inputset, quantized_numpy_module, simulate=True)

# Collect FHE simulation results
results = []
for i in range(inputset.shape[0]):

# Extract example i for each tensor in the tuple input-set
# while keeping the dimension of the original tensors.
# e.g., if input-set is a tuple of two (100, 10) tensors
# then q_x becomes a tuple of two tensors of shape (1, 10).
x = tuple(input[[i]] for input in to_tuple(inputset))
result = numpy.argmax(quantized_numpy_module.forward(*x, fhe="simulate"))
results.append(result)

# Compare ONNX runtime vs FHE simulation mode
check_accuracy(onnx_results, results, threshold=0.999)

# Make sure absolute accuracy is good, this model should have at least 90% accuracy
check_accuracy(mnist_data["gt"], results, threshold=0.9)

# Compile to Concrete ML using the FHE simulation mode and compatible bit-width
n_bits = {
"model_inputs": 7,
"op_weights": 2,
"op_inputs": 2,
"model_outputs": 7,
}

quantized_numpy_module = compile_onnx_model(
onnx_model,
inputset,
import_qat=True,
configuration=default_configuration,
n_bits=n_bits,
verbose=verbose,
)

# As this is a custom QAT network, the input goes through multiple univariate
# ops that form a quantizer. Thus it has input TLUs. But it should not have output TLUs
check_graph_output_has_no_tlu(quantized_numpy_module.fhe_circuit.graph)

assert quantized_numpy_module.fhe_circuit.graph.maximum_integer_bit_width() <= 8


def test_qat_import_bits_check(default_configuration):
"""Test that compile_brevitas_qat_model does not need an n_bits config."""

Expand Down
Loading