-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathqgpt2_models.py
444 lines (344 loc) · 18.1 KB
/
qgpt2_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
from __future__ import annotations
import os
from typing import Optional, Tuple, Union
import numpy as np
import torch
from concrete.fhe.compilation import Circuit, Configuration
from qgpt2_class import QGPT2
from quant_framework import DualArray
from transformers import GPT2LMHeadModel
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.modeling_gpt2 import GPT2Attention
from transformers.pytorch_utils import Conv1D
from utility_functions import slice_ordered_dict
class QGPT2Attention(GPT2Attention):
"""Base class for building a torch module for the quantized attention mechanism."""
def __init__(self, config: GPT2Config):
"""Initialize the base class.
Args:
config (GPT2Config): GPT-2's configuration.
"""
super().__init__(config)
self.fhe = "disable"
self.true_float = False
def set_fhe_mode(self, fhe: str = "disable", true_float: bool = False):
"""Set the FHE mode for the module's forward pass.
fhe (str): The FHE mode to consider, either "disable", "simulate" or "execute". Default
to "disable".
true_float (bool): If the FHE mode is set to "disable", indicate if the operations
should be in floating points instead of being quantized. Default to False.
"""
assert fhe in [
"disable",
"simulate",
"execute",
], "Parameter 'fhe' can only be 'disable', 'simulate' or 'execute'."
self.fhe = fhe
self.true_float = true_float
class QGPT2LMHeadModel(GPT2LMHeadModel):
"""Base class for integrating quantized operations within GPT2LMHeadModel's forward pass."""
def __init__(
self,
config: GPT2Config,
n_bits: int,
attention_module: Union[QGPT2SingleHeadAttention, QGPT2MultiHeadsAttention],
layer: int = 0,
):
"""Initialize the base class.
This class essentially overwrites GPT-2's attention module found in the layer whose index is
given with the given quantized module.
Args:
config (GPT2Config): GPT-2's configuration.
n_bits (int): The number of bits to use for quantizing the inputs, weights and
activations.
attention (Union[QGPT2SingleHeadAttention, QGPT2MultiHeadsAttention]): The quantized attention module
to consider.
layer (int): The index representing the GPT-2 layer to consider. Default to 0.
"""
assert 0 <= layer <= 11, f"The GPT-2 model only has 12 layers, but got {layer}"
super().__init__(config)
self.transformer.h[layer].attn = attention_module(config, n_bits=n_bits, layer=layer)
@property
def q_attention(self) -> GPT2Attention:
"""Get GPT-2's attention module found in the first layer.
Returns:
GPT2Attention: The attention module.
"""
return self.transformer.h[0].attn
def set_fhe_mode(self, fhe: str = "disable", true_float: bool = False):
"""Set the FHE mode for the module's forward pass.
fhe (str): The FHE mode to consider, either "disable", "simulate" or "execute". Default
to "disable".
true_float (bool): If the FHE mode is set to "disable", indicate if the operations
should be in floating points instead of being quantized. Default to False.
"""
self.q_attention.set_fhe_mode(fhe=fhe, true_float=true_float)
def compile(
self,
inputset_ids: torch.Tensor,
configuration: Optional[Configuration] = None,
msbs_round: Optional[int] = None,
rounding_kwargs: Optional[Dict] = None,
) -> Circuit:
"""Compile the model using the stored calibration data.
Args:
inputset_ids (torch.Tensor): The token ids to consider as an inputset.
configuration (Optional[Configuration]): The configuration to use during compilation.
Default to None.
msbs_round (Optional[int]): msbs to keep after rounding
rounding_kwargs (Optional[Dict]): optional keyword arguments of `InsertRounding`
Returns:
Circuit: The underlying FHE circuit.
"""
# Disable the FHE execution, as the following forward pass should be made in the clear along
# floating point values. This is done in order to properly calibrate and store the
# quantization parameters such as the scale and zero points
self.set_fhe_mode(fhe="disable", true_float=False)
# Execute a full pass in the clear
self.forward(inputset_ids, use_cache=False)
# Compile the attention module using stored calibration data (made of intermediary hidden
# states)
return self.q_attention.q_module.compile(
configuration=configuration, msbs_round=msbs_round, rounding_kwargs=rounding_kwargs
)
class SingleHeadAttention(QGPT2):
"""Class representing a single attention head implemented with quantization methods.
The first projections (represented by the "c_attn" weights) is also done with quantized methods.
In order to properly achieve this, the inputs are expected to have the shape
(n_batch, 1, n_seq, head_dim) while the weights are extracted with proper shapes at the right
indices.
"""
def __init__(self, n_bits: int, layer, n_bits_weights: Optional[int] = None):
super().__init__(n_bits, layer=layer, n_bits_weights=n_bits_weights)
# Extract the embedding and the head dimensions, which are respectively 768 and 64 for the
# GPT-2 model (which uses 12 heads)
self.n_embd = self.config.n_embd
self.head_dim = self.config.n_embd // self.config.n_head
def run_numpy(self, q_inputs: np.ndarray) -> Union[np.ndarray, DualArray]:
"""Run the quantized operators that will be converted to FHE.
Args:
q_inputs (np.ndarray): The quantized inputs.
Returns:
Union[np.ndarray, DualArray]: The quantized outputs.
"""
# Convert the input to a DualArray instance using the stored calibration data
# q_x has shape (n_batch, n_seq, n_embed)
q_x = DualArray(float_array=self.x_calib, int_array=q_inputs, quantizer=self.quantizer)
# Extract the attention base module name
mha_module_name = f"transformer.h.{self.layer}.attn."
# Extract the query, key and value weight and bias values using the proper indices
head_0_indices = [
list(range(i * self.n_embd, i * self.n_embd + self.head_dim)) for i in range(3)
]
q_qkv_weights = self.q_weights[mha_module_name + "c_attn.weight"].slice_array(
axis=-1, indices=head_0_indices, key=f"slice_qkv_weights_layer_{self.layer}"
)
q_qkv_bias = self.q_weights[mha_module_name + "c_attn.bias"].slice_array(
axis=-1, indices=head_0_indices, key=f"slice_qkv_bias_layer_{self.layer}"
)
# Apply the first projection in order to extract Q, K and V as a single array
# q_qkv has shape (n_batch, n_seq, 3*head_dim)
q_qkv = q_x.linear(
weight=q_qkv_weights,
bias=q_qkv_bias,
key=f"attention_qkv_proj_layer_{self.layer}",
)
# Reshape q_qkv in order to indicate to the attention that we only consider a single head
# here, meaning the shape is now (n_batch, 1, n_seq, 3*head_dim)
q_qkv = q_qkv.expand_dims(axis=1, key=f"unsqueeze_{self.layer}")
# Extract Q, K and V, with shapes (n_batch, 1, n_seq, head_dim)
q_q, q_k, q_v = q_qkv.enc_split(3, axis=-1, key=f"qkv_split_layer_{self.layer}")
# Apply the attention mechanism
q_y = self.attention(q_q, q_k, q_v)
return self.finalize(q_y)
class QGPT2SingleHeadAttention(QGPT2Attention):
"""Torch module that rewrites GPT-2's attention with quantized operations on a single head."""
def __init__(self, config: GPT2Config, layer: int, n_bits: int = 16):
super().__init__(config)
# Instantiate the quantized module used for the attention mechanism
self.q_module = SingleHeadAttention(n_bits=n_bits, layer=layer)
# Define the number of head to consider with quantized operators
self.n_qhead = 1
# Define the new 1D convolution operator with proper shapes, knowing that a single head
# is done with the quantized module and only 11 heads should be considered in float
self.float_embed_dim = self.embed_dim - self.n_qhead * self.head_dim
self.c_attn_1_11 = Conv1D(3 * self.float_embed_dim, self.embed_dim)
self.split_size = self.float_embed_dim
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
"""GPT-2's multi-head attention pass with a single head made for FHE computations.
The initial implementation can be found in huggingFace's GPT2Attention class.
"""
if encoder_hidden_states is not None:
raise ValueError(
"Class cannot be used as cross attention, please make sure to not instantiate "
"class with `GPT2Attention(..., is_cross_attention=True)`."
)
# Compute Q, K, V in the clear for head 1 up to 11
query, key, value = self.c_attn_1_11(hidden_states).split(self.split_size, dim=2)
# Split them into 11 heads
query = self._split_heads(query, self.num_heads - self.n_qhead, self.head_dim)
key = self._split_heads(key, self.num_heads - self.n_qhead, self.head_dim)
value = self._split_heads(value, self.num_heads - self.n_qhead, self.head_dim)
if layer_past is not None:
past_key, past_value = layer_past
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
if use_cache is True:
present = (key, value)
else:
present = None
if self.reorder_and_upcast_attn:
raise ValueError("Method 'reorder_and_upcast_attn' is not implemented")
# Apply the multi-head attention mechanism in the clear onto the 11 heads
attn_output_1_11, _ = self._attn(query, key, value, attention_mask, head_mask)
# Apply the attention on the first head using FHE-compliant operators
attn_output_0 = self.q_module.run_torch(
hidden_states,
fhe=self.fhe,
true_float=self.true_float,
)
# Concatenate the heads together
attn_output = torch.cat((attn_output_0, attn_output_1_11), dim=1)
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
attn_output = self.c_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
return (attn_output, present)
class SingleHeadQGPT2Model(QGPT2LMHeadModel):
"""QGPT2LMHeadModel implementation with a single attention head can be executed in FHE."""
def __init__(self, config: GPT2Config, n_bits: int = 16, layer: int = 0):
super().__init__(
config, n_bits=n_bits, attention_module=QGPT2SingleHeadAttention, layer=layer
)
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs
):
"""Load the model from pre-trained files and manually load the new Conv1D module's weights.
The convolution module must be manually loaded with the proper weights, representing the 11
heads instead of the usual 12 ones, since it does not exist in Hugging Face's initial
implementation of GPT-2.
"""
model = super().from_pretrained(
pretrained_model_name_or_path=pretrained_model_name_or_path, *model_args, **kwargs
)
# Retrieve the proper attention weights
c_attn_params = model.q_attention.c_attn.state_dict()
# Extract the proper indices and shapes
n_embd = model.config.n_embd
head_dim = model.config.n_embd // model.config.n_head
head_1_11_indices = [list(range(i * n_embd + head_dim, (i + 1) * n_embd)) for i in range(3)]
c_attn_params_1_11 = slice_ordered_dict(c_attn_params, dim=-1, indices=head_1_11_indices)
# Load the weights into the new convolution module
c_attn_params = model.q_attention.c_attn_1_11.load_state_dict(c_attn_params_1_11)
return model
class MultiHeadsAttention(QGPT2):
"""Class representing the multi-head mechanism implemented with quantization methods."""
def run_numpy(self, q_inputs: np.ndarray) -> Union[np.ndarray, DualArray]:
"""Run the quantized operators that will be converted to FHE.
This method is essentially the multi-head attention mechanism initially implemented in the
forward pass of Hugging Face's GPT2Attention module but with quantized operators only
Args:
q_inputs (np.ndarray): The quantized inputs.
Returns:
Union[np.ndarray, DualArray]: The quantized outputs.
"""
# Convert the inputs to a DualArray instance using the stored calibration data
# q_x has shape (n_batch, n_seq, n_embed)
q_x = DualArray(float_array=self.x_calib, int_array=q_inputs, quantizer=self.quantizer)
# Extract the attention base module name
mha_module_name = f"transformer.h.{self.layer}.attn."
# Apply the first projection in order to extract Q, K and V as a single array
# q_qkv has shape (n_batch, n_seq, 3*n_embed)
q_qkv = q_x.linear(
weight=self.q_weights[mha_module_name + "c_attn.weight"],
bias=self.q_weights[mha_module_name + "c_attn.bias"],
key=f"attention_qkv_proj_layer_{self.layer}",
)
# Extract Q, K and V, with shapes (n_batch, n_seq, n_embed)
q_q, q_k, q_v = q_qkv.enc_split(3, axis=-1, key=f"qkv_split_layer_{self.layer}")
# Reshape Q, K and V in order to be splitted into 12 heads, as done in the initial
# implementation
# q_q_mh, q_k_mh, q_v_mh have shape (n_batch, n_head, n_seq, n_embed // n_head)
splitted_head_shape = (
q_x.shape[0],
q_x.shape[1],
self.config.n_head,
q_x.shape[2] // self.config.n_head,
)
q_q_mh = q_q.reshape(
splitted_head_shape, key=f"q_head_reshape_layer_{self.layer}"
).transpose((0, 2, 1, 3), key=f"q_head_transpose_layer_{self.layer}")
q_k_mh = q_k.reshape(
splitted_head_shape, key=f"k_head_reshape_layer_{self.layer}"
).transpose((0, 2, 1, 3), key=f"k_head_transpose_layer_{self.layer}")
q_v_mh = q_v.reshape(
splitted_head_shape, key=f"v_head_reshape_layer_{self.layer}"
).transpose((0, 2, 1, 3), key=f"v_head_transpose_layer_{self.layer}")
# Compute the attention
# q_y_mh has shape (n_batch, n_head, n_seq, n_embed // n_head)
q_y_mh = self.attention(q_q_mh, q_k_mh, q_v_mh)
# Merge back the 12 heads along axis -1, as done in the initial implementation
# q_y has shape (n_batch, n_seq, n_embed)
q_y_mh = q_y_mh.transpose((0, 2, 1, 3), key=f"head_transpose_layer_{self.layer}")
q_y = q_y_mh.reshape(q_x.shape, key=f"head_reshape_layer_{self.layer}")
# Re-quantize the result to n_bits for precision stability
q_y = q_y.requant(key="q_y_requant")
# Apply the last projection
# q_y has shape (n_batch, n_seq, n_embed)
q_y = q_y.linear(
weight=self.q_weights[mha_module_name + "c_proj.weight"],
bias=self.q_weights[mha_module_name + "c_proj.bias"],
key=f"attention_last_proj_layer_{self.layer}",
)
return self.finalize(q_y)
class QGPT2MultiHeadsAttention(QGPT2Attention):
"""Torch module that rewrites GPT-2's multi-head attention with quantized operations."""
def __init__(self, config, layer, n_bits=16):
super().__init__(config)
# Instantiate the quantized module used for the multi-head attention mechanism
self.q_module = MultiHeadsAttention(n_bits=n_bits, layer=layer)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
"""GPT-2's multi-head attention pass made for FHE computations.
The initial implementation can be found in huggingFace's GPT2Attention class.
"""
if encoder_hidden_states is not None:
raise ValueError(
"Class cannot be used as cross attention, please make sure to not instantiate "
"class with `GPT2Attention(..., is_cross_attention=True)`."
)
if self.reorder_and_upcast_attn:
raise ValueError("Method 'reorder_and_upcast_attn' is not implemented")
# Apply the multi-head attention using FHE-compliant operators
attn_output = self.q_module.run_torch(
hidden_states,
fhe=self.fhe,
true_float=self.true_float,
)
# The method does not handle the cache option
return (attn_output, None)
class MultiHeadsQGPT2Model(QGPT2LMHeadModel):
"""QGPT2LMHeadModel implementation with multi-head attention that can be executed in FHE."""
def __init__(self, config: GPT2Config, n_bits: int = 16, layer: int = 0):
super().__init__(
config, n_bits=n_bits, attention_module=QGPT2MultiHeadsAttention, layer=layer
)