forked from MacGallagher/GEE_STARFM_FUSION
-
Notifications
You must be signed in to change notification settings - Fork 0
/
geestarfm_workflow.R
204 lines (153 loc) · 6.86 KB
/
geestarfm_workflow.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
######## R code for GEE/STARFM #########
#### based on code by Faye Peters
#### modified by Megan Gallagher with help from Jake Graham
######################################################
### Used in conjunction with GEE code modified by Megan Gallagher, this is for Landsat8 and MODIS Terra Daily 250 m use
### Set up a folder that contains the Landsat, and MODIS files, as well as the starfm.exe and starfmconfig.txt
### create a separate folder called output in that folder
### for code changes and inquiries for adjustment for certain factors please email: [email protected]
setwd("~/GEESTARFM")
library(raster)
library(rgdal)
library(zoo)
library(ggplot2)
library(fields)
###########################################Inputs##########################################################
## Load images and dates (be careful ofmatching dates and layers, the first layer may repeat)
## Read imagery dates and matching data:
image_dates<- read.csv("./2016_Dates_BOP", stringsAsFactors=F)
## dates are not used in this code but are useful for other programs like bfastspatial, to check date overlap, and timing
modis<-brick("./2016_mod.tif")
landsat<-brick("./2016_landsat.tif")
##percentage of cover that is used to find "good" landsat scenes for interpolation
## is the inverse of the actual cloud cover, 99 percent means 1 percent of the pixels is an actual value
perc<- 99
##################################################Code########################################################
#### STARFM code and function
starfm<-function(modis,landsat,perc){
config <- readLines("./StarFM_config.txt")
config <- gsub("(.*NROWS = ).*$", paste0("\\1", nrow(landsat)),config )
config <- gsub("(.*NCOLS = ).*$", paste0("\\1", ncol(landsat)),config )
cat(config, file="./StarFM_config.txt", sep="\n")
## Fix any missing data that enters as zeroes to our NA value.We have
## to do this by layer as operating on the entire stack may run into
## memory issues on larger subsets:
for (i in 1:nlayers(modis)) {
## Use the raster Which() function for speed:
masked <- Which(modis[[i]] == 0, cells=TRUE)
modis[[ i ]][ masked ] <- -32768
masked <- Which(landsat[[i]] == 0, cells=TRUE)
landsat[[ i ]][ masked ] <- -32768
}
## Automatically choose "good" landsat layers, at the moment this includes all actual landsat images
## if you want to create a threshhold for masking change the total percent of the pixel.
## i.e. if percent = 30, more than 70 percent of the image must be actual pixel values
area<-landsat@nrows*landsat@ncols
perc_Area<-(perc/100)*area
test2<-rep(NA,nlayers(modis))
filternew<-rep(NA,nlayers(modis))
for (i in 2:nlayers(modis)){
test2[i] <-sum(landsat[[i]][])
filternew[i] <-(test2[i]>{-32768*perc_Area}) == 1
}
filt3 = which(filternew==1)
filt3 <-append(filt3,1,0)
## Test landsat image from list
good_layer <-filt3(3)
plot(landsat[[good_layer]])
## If the above all works, then we run the following to loop over the
## MODIS time steps, filling in Landsat output as we go:
landsat_sim <- stack(modis)
landsat_sim[] <- NA
## Iterate and run StarFM for each MODIS date, choosing the
## nearest pair of good MODIS/Landsat dates, one before and
## one after the date being simulated where possible:
good_landsat <- c(filt3)
back <- 0
forward <- 0
pb <- pbCreate((nlayers(landsat_sim)), "window", style=3,label='Time Step Progress')
for (i in 1:nlayers(landsat_sim)) {
##for (i in 1:10) {
## jakes/megan's work
rm(back,forward)
if (i %in% c(filt3)){
back <- 0
forward <- 0
ls_t1temp<- i
ls_t3temp <- i
}
else {
foo <- good_landsat - i
if(!length(which(foo==0))){
back <- good_landsat[which(foo==max(foo[foo < 0]))]
forward <- good_landsat[which(foo==min(foo[foo > 0]))]
ls_t1temp <- back
ls_t3temp <-forward
}
}
##end
ls_t1 <- ls_t1temp
ls_t3 <- ls_t3temp
m_t1 <- ls_t1
m_t3 <- ls_t3
modis_t1 <- modis[[m_t1]]
modis_t2 <- modis[[i]]
modis_t3 <- modis[[m_t3]]
landsat_t1 <- landsat[[ls_t1]]
landsat_t3 <- landsat[[ls_t3]]
writeRaster(modis_t1, filename="./modis_t1.envi", bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE)
writeRaster(modis_t2, filename="./modis_t2.envi",bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE)
writeRaster(modis_t3, filename="./modis_t3.envi", bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE)
writeRaster(landsat_t1, filename="./landsat_t1.envi", bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE)
writeRaster(landsat_t3, filename="./landsat_t3.envi", bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE)
system2(command="./StarFM.exe",args="StarFM_config.txt", wait=TRUE)
landsat_t2_sim <- raster("./landsat_t2_sim.envi")
## Set any -32768 to NA values before writing:
landsat_t2_sim[ landsat_t2_sim == -32768 ] <- NA
landsat_sim[[i]] <- landsat_t2_sim[]
## In our filled data set, set any missing Landsat pixels to those
## simulated via StarFM:
pbStep(pb, step=NULL, label='Processed Layer') }
pbClose(pb, timer=T)
return(landsat_sim)
}
landsat_sim<-starfm(modis,landsat,perc)
#### Possible raster outputs for saving
writeRaster(landsat_sim, filename="./output/2016_fusion.envi",
bandorder='BSQ', datatype='INT2S', format="ENVI", overwrite=TRUE)
writeRaster(landsat_sim, filename="./output/2016_fusion.tif", bandorder='BSQ',
datatype='INT2S',format='GTiff', overwrite=TRUE)
#####################################################################################################################
#### Basic Gaussian Smoothing
######Inputs
upper<-8000 ##anyting above this counts as noise
lower<-1000 ## anything below this counts as noise
SD<-10 ## number of days for smoothing window
landsat_sim<-landsat_sim ## name of raster brick
############################################################
#gaussian kernel
GausKern <- function(SD){
gk <- rep(NA, SD*7)
inds <- seq(-(length(gk)/2), (length(gk)/2), 1) + .5
for(i in 1:length(gk)){
gk[i] <- (1/(sqrt(2*pi*SD^2))) * exp(-((inds[i])^2)/(2*SD^2))
}
gk <- gk + ((1-sum(gk))/length(gk))
return(gk)
}
gk <- GausKern(SD)
# prepare smoothing function
# NAs are filled with median of that pixel through the time series (check bounds for best na)
eles <- landsat_sim@ncols * landsat_sim@nrows
for (i in 1:eles){
tmp <- as.numeric(landsat_sim[i])
tmp[tmp>upper] <-NA
tmp[tmp<lower] <-NA
tmp[is.na(tmp)] <- median(tmp,na.rm = TRUE)
test[i] <- convolve(tmp[2:(length(tmp)-2)],gk, type = "filter")
}
writeRaster(test, filename="./output/landsat_smooth.tif", bandorder='BSQ', datatype='INT2S',format='GTiff', overwrite=TRUE)
###############################################Plots for smoothing view#############################################
#par(mfrow=c(2,1))
plot(1:length(landsat_sim[1]), landsat_sim[1], type = "l")
lines(1:length(landsat_sim[1]), test[1], col = "red", lwd = 2)