forked from liamhuber/clustergb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcgb_rescale_potential.py
executable file
·235 lines (182 loc) · 9.7 KB
/
cgb_rescale_potential.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python
#####################################################
# This file is a component of ClusterGB #
# Copyright (c) 2018 Liam Huber #
# Released under the MIT License (see distribution) #
#####################################################
"""
Rescales a potential to give a target 0 K lattice parameter and writes the modified potential to a file.
This isn't an integral part of the clustergb package, but is extremely likely to be useful since it lets you match the
lattice constants of multiple EAM potentials, allowing (as best as possible) an apples-to-apples comparison of
different potentials.
"""
from __future__ import absolute_import
import argparse
import os
import shutil
import numpy as np
#from . import clustergb as cgb
import clustergb as cgb
__author__ = "Liam Huber"
__copyright__ = "Copyright 2018, Liam Huber"
__license__ = "MIT"
__maintainer__ = "Liam Huber"
__email__ = "[email protected]"
__status__ = "Production"
def main(args):
targ_latt = args.fcc or args.bcc
xl_type = np.array(['fcc', 'bcc'])[np.array([args.fcc, args.bcc], dtype=bool)][0]
last_dr = read_dr(args.potential)
last_err = get_lattice_difference(xl_type, targ_latt, args.potential, args.species, args.strain, args.nsamples,
procs=args.procs, max_steps=args.lammps_max_steps,
force_convergence=args.lammps_force_convergence)
if args.check_only:
print("Energy vs strain fit gives an optimal lattice parameter of " + str(targ_latt + last_err) + " for this "
"potential. Terminating after lattice check.")
return
if abs(last_err) < args.precision:
actual_latt = targ_latt + last_err
print("The potential already has a lattice constant of " + str(actual_latt) + " which is within "
"the requested precision. No new potential file written.")
# Copy the potential to a new rescaled file
base_name = os.path.basename(os.path.realpath(args.potential))
pot_dir = os.path.dirname(os.path.realpath(args.potential))
# Slice and dice the name to insert 'rescaled_x_y' into the filename where x.y is the target lattice constant
latt_string = '_'.join(str(targ_latt).split('.'))
split_base = base_name.split('.')
name_components = [split_base[0] + '_rescaled_' + latt_string]
name_components += [comp for comp in split_base[1:]]
rescaled_pot_name = '.'.join(name_components) # Format the string all properly
rescaled_pot = os.path.join(pot_dir, rescaled_pot_name)
shutil.copyfile(args.potential, rescaled_pot)
# Rescale the copied potential
dr = last_dr + args.init_dr_step
set_dr(rescaled_pot, dr)
# Get the error with the new rescaled potential
err = get_lattice_difference(xl_type, targ_latt, rescaled_pot, args.species, args.strain, args.nsamples,
procs=args.procs, max_steps=args.lammps_max_steps,
force_convergence=args.lammps_force_convergence)
print("Step, error")
step = 0
print(step, err)
while abs(err) > args.precision:
new_dr = dr - err * (dr - last_dr) / (err - last_err) # Secant method
set_dr(rescaled_pot, new_dr)
new_err = get_lattice_difference(xl_type, targ_latt, rescaled_pot, args.species, args.strain, args.nsamples,
procs=args.procs, max_steps=args.lammps_max_steps,
force_convergence=args.lammps_force_convergence)
last_err = err
last_dr = dr
err = new_err
dr = new_dr
step += 1
print(step, err)
print("Rescaled potential written to " + rescaled_pot + ".")
print("The final lattice constant was " + str(targ_latt + err) + ".")
return
def get_lattice_difference(xl_type, targ_latt, potential, species, strain, samples,
max_steps=1000, force_convergence=0.0001, procs=1):
"""
Relax a unit cell at zero pressure to get an approximation of the minimum lattice constant, then run a series of
strained static calculations and fit a quadratic to the energy curve to get a more accurate minimum. Return the
difference between the target lattice `targ_latt` and the actual lattice returned by the `potential`.
Args:
xl_type (str): Crystal structure indicator.
targ_latt (float): Target lattice constant and initial guess for isobaric relaxation.
potential (str): Path to a valid EAM potential to use.
species (str): Chemical symbol of the species to use from the potential.
strain (float): Maximum strain (as a fraction of optimal lattice parameter) for the energy-volume curve.
samples (int): Number of data points on the energy-volume curve.
max_steps (int): Maximum number of conjugate gradient steps to take.
force_convergence (float): Stopping threshold based on the L2 norm of the global force vector.
procs (int): How many processors to run on. (Default is 1.)
Returns:
(*float*) -- The difference between minimum energy lattice constant and the target value.
"""
# Run minimization to get estimate of min value
data = cgb.lammps.run_minimization_bulk(xl_type, targ_latt, potential, species,
max_steps=max_steps, force_convergence=force_convergence, nprocs=procs)
init_latt = data.lx
# Do a strain about that minimum value
min_strained = init_latt * (1 - strain)
max_strained = init_latt * (1 + strain)
strained_latts = np.linspace(min_strained, max_strained, samples)
_, energies = cgb.lammps.energy_volume_curve(xl_type, strained_latts, potential, species, nprocs=procs)
# Fit a quadratic to the energy and get the minima
fit = np.polyfit(strained_latts, energies, 2)
min_latt = -fit[1] / (2 * fit[0])
return min_latt - targ_latt
def read_dr(potential):
"""Read the `dr` value (real-space stepping of the tabulated values) of an EAM potential."""
pot_type = cgb.osio.file_extension(potential)
if pot_type == 'alloy':
return read_dr_alloy(potential)
elif pot_type == 'fs':
return read_dr_finnis_sinclair(potential)
else:
raise Exception('Unrecognized potential type, "' + pot_type + '".')
def read_dr_alloy(potential):
with open(potential, 'r') as fpot:
contents = fpot.readlines()
dr = float(contents[4].split()[3])
return dr
def read_dr_finnis_sinclair(potential):
return read_dr_alloy(potential)
def set_dr(potential, new_dr):
"""Change the `dr` value (real-space stepping of the tabulated values) for an EAM potential."""
pot_type = cgb.osio.file_extension(potential)
if pot_type == 'alloy':
set_dr_alloy(potential, new_dr)
elif pot_type == 'fs':
set_dr_finnis_sinclair(potential, new_dr)
else:
raise Exception('Unrecognized potential type, "' + pot_type + '".')
return
def set_dr_alloy(potential, new_dr):
with open(potential, 'r') as fpot:
contents = fpot.readlines()
data = contents[4].split()
data[3] = str(new_dr)
contents[4] = ' '.join(data) + '\r\n'
with open(potential, 'w') as fpot:
fpot.writelines(contents)
return
def set_dr_finnis_sinclair(potential, new_dr):
set_dr_alloy(potential, new_dr)
def _ret_parser():
parser = argparse.ArgumentParser(description='Rescale an EAM potential to match a target lattice parameter at 0K.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Material parameters
parser.add_argument('potential', type=cgb.lammps.potential_check,
help='Path to the empirical potential to rescale.')
parser.add_argument('species', type=str,
help='Elemental symbol for the host (as referenced in the potential.)')
lattice_args = parser.add_mutually_exclusive_group(required=True)
lattice_args.add_argument('--fcc', '-fcc', type=float,
help='Use fcc lattice and target given size (in angstroms).')
lattice_args.add_argument('--bcc', '-bcc', type=float,
help='Use bcc lattice and target given size (in angstroms).')
# Numeric parameters
parser.add_argument('--precision', '-prec', type=float, default=0.00001,
help='Precision for matching actual lattice constant to target.')
parser.add_argument('--strain', '-stn', type=float, default=0.00001,
help='Maximum strain away from target value for energy-volume curve.')
parser.add_argument('--nsamples', '-n', type=int, default=8,
help='Number of points in energy-volume curve.')
parser.add_argument('--init_dr_step', '-dr0', type=float, default=0.00001,
help='Initial step for changing the potential\'s dr value.')
parser.add_argument('--lammps_force_convergence', '-ftol', type=float, default=0.001,
help='Force convergence for all LAMMPS minimizations in eV/angstrom.')
parser.add_argument('--lammps_max_steps', '-lms', type=int, default=10000,
help='Max steps for LAMMPS energy minimization.')
parser.add_argument('--procs', '-np', type=int, default=1,
help='Max processors available to run mpi on.')
# Alternate run-style
parser.add_argument('--check_only', '-check', action='store_true',
help='Instead of rescaling the potential, just get its optimal lattice constant from an '
'energy-volume curve.')
return parser
if __name__ == '__main__':
returned_parser = _ret_parser()
arguments = returned_parser.parse_args()
main(arguments)