-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtransform.py
62 lines (52 loc) · 2.71 KB
/
transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class SelectionSequentialTransform(object):
def __init__(self, tokenizer, max_len):
self.tokenizer = tokenizer
self.max_len = max_len
def __call__(self, texts):
input_ids_list, segment_ids_list, input_masks_list, contexts_masks_list = [], [], [], []
for text in texts:
tokenized_dict = self.tokenizer.encode_plus(text, max_length=self.max_len, pad_to_max_length=True)
input_ids, input_masks = tokenized_dict['input_ids'], tokenized_dict['attention_mask']
assert len(input_ids) == self.max_len
assert len(input_masks) == self.max_len
input_ids_list.append(input_ids)
input_masks_list.append(input_masks)
return input_ids_list, input_masks_list
class SelectionJoinTransform(object):
def __init__(self, tokenizer, max_len):
self.tokenizer = tokenizer
self.max_len = max_len
def __call__(self, text):
tokenized_dict = self.tokenizer.encode_plus(text, max_length=self.max_len, pad_to_max_length=True)
input_ids, input_masks = tokenized_dict['input_ids'], tokenized_dict['attention_mask']
assert len(input_ids) == self.max_len
assert len(input_masks) == self.max_len
return input_ids, input_masks
class SelectionConcatTransform(object):
def __init__(self, tokenizer, max_response_len, max_contexts_len):
self.tokenizer = tokenizer
self.max_response_len = max_response_len
self.max_contexts_len = max_contexts_len
self.max_len = max_response_len + max_contexts_len
def __call__(self, context, responses):
tokenized_dict = self.tokenizer.encode_plus(context, max_length=self.max_contexts_len)
context_ids, context_masks, context_segment_ids = tokenized_dict['input_ids'], tokenized_dict['attention_mask'], tokenized_dict['token_type_ids']
ret_input_ids = []
ret_input_masks = []
ret_segment_ids = []
for response in responses:
tokenized_dict = self.tokenizer.encode_plus(response, max_length=self.max_response_len+1)
response_ids, response_masks, response_segment_ids = tokenized_dict['input_ids'], tokenized_dict['attention_mask'], tokenized_dict['token_type_ids']
input_ids = context_ids + response_ids[1:]
input_masks = context_masks + response_masks[1:]
input_segment_ids = context_segment_ids + [1]*(len(response_segment_ids)-1)
input_ids += [0] * (self.max_len - len(input_ids))
input_masks += [0] * (self.max_len - len(input_masks))
input_segment_ids += [0] * (self.max_len - len(input_segment_ids))
assert len(input_ids) == self.max_len
assert len(input_masks) == self.max_len
assert len(input_segment_ids) == self.max_len
ret_input_ids.append(input_ids)
ret_input_masks.append(input_masks)
ret_segment_ids.append(input_segment_ids)
return ret_input_ids, ret_input_masks, ret_segment_ids