forked from IBM/tensorflow-hangul-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hangul_model.py
executable file
·318 lines (247 loc) · 11.7 KB
/
hangul_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#!/usr/bin/env python
import argparse
import io
import os
import tensorflow as tf
from tensorflow.python.tools import freeze_graph
from tensorflow.python.tools import optimize_for_inference_lib
SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
# Default paths.
DEFAULT_LABEL_FILE = os.path.join(SCRIPT_PATH,
'./labels/2350-common-hangul.txt')
DEFAULT_TFRECORDS_DIR = os.path.join(SCRIPT_PATH, 'tfrecords-output')
DEFAULT_OUTPUT_DIR = os.path.join(SCRIPT_PATH, 'saved-model')
MODEL_NAME = 'hangul_tensorflow'
IMAGE_WIDTH = 64
IMAGE_HEIGHT = 64
DEFAULT_NUM_EPOCHS = 15
BATCH_SIZE = 100
# This will be determined by the number of entries in the given label file.
num_classes = 2350
def _parse_function(example):
features = tf.parse_single_example(
example,
features={
'image/class/label': tf.FixedLenFeature([], tf.int64),
'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
default_value='')
})
label = features['image/class/label']
image_encoded = features['image/encoded']
# Decode the JPEG.
image = tf.image.decode_jpeg(image_encoded, channels=1)
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image = tf.reshape(image, [IMAGE_WIDTH*IMAGE_HEIGHT])
# Represent the label as a one hot vector.
label = tf.stack(tf.one_hot(label, num_classes))
return image, label
def export_model(model_output_dir, input_node_names, output_node_name):
"""Export the model so we can use it later.
This will create two Protocol Buffer files in the model output directory.
These files represent a serialized version of our model with all the
learned weights and biases. One of the ProtoBuf files is a version
optimized for inference-only usage.
"""
name_base = os.path.join(model_output_dir, MODEL_NAME)
frozen_graph_file = os.path.join(model_output_dir,
'frozen_' + MODEL_NAME + '.pb')
freeze_graph.freeze_graph(
name_base + '.pbtxt', None, False, name_base + '.chkp',
output_node_name, "save/restore_all", "save/Const:0",
frozen_graph_file, True, ""
)
input_graph_def = tf.GraphDef()
with tf.gfile.Open(frozen_graph_file, "rb") as f:
input_graph_def.ParseFromString(f.read())
output_graph_def = optimize_for_inference_lib.optimize_for_inference(
input_graph_def, input_node_names, [output_node_name],
tf.float32.as_datatype_enum)
optimized_graph_file = os.path.join(model_output_dir,
'optimized_' + MODEL_NAME + '.pb')
with tf.gfile.GFile(optimized_graph_file, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("Inference optimized graph saved at: " + optimized_graph_file)
def weight_variable(shape):
"""Generates a weight variable of a given shape."""
initial = tf.random.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name='weight')
def bias_variable(shape):
"""Generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name='bias')
def main(label_file, tfrecords_dir, model_output_dir, num_train_epochs):
"""Perform graph definition and model training.
Here we will first create our input pipeline for reading in TFRecords
files and producing random batches of images and labels.
Next, a convolutional neural network is defined, and training is performed.
After training, the model is exported to be used in applications.
"""
global num_classes
labels = io.open(label_file, 'r', encoding='utf-8').read().splitlines()
num_classes = len(labels)
# Define names so we can later reference specific nodes for when we use
# the model for inference later.
input_node_name = 'input'
keep_prob_node_name = 'keep_prob'
output_node_name = 'output'
if not os.path.exists(model_output_dir):
os.makedirs(model_output_dir)
print('Processing data...')
tf_record_pattern = os.path.join(tfrecords_dir, '%s-*' % 'train')
train_data_files = tf.gfile.Glob(tf_record_pattern)
tf_record_pattern = os.path.join(tfrecords_dir, '%s-*' % 'test')
test_data_files = tf.gfile.Glob(tf_record_pattern)
# Create training dataset input pipeline.
train_dataset = tf.data.TFRecordDataset(train_data_files) \
.map(_parse_function) \
.shuffle(1000) \
.repeat(num_train_epochs) \
.batch(BATCH_SIZE) \
.prefetch(1)
# Create the model!
# Placeholder to feed in image data.
x = tf.placeholder(tf.float32, [None, IMAGE_WIDTH*IMAGE_HEIGHT],
name=input_node_name)
# Placeholder to feed in label data. Labels are represented as one_hot
# vectors.
y_ = tf.placeholder(tf.float32, [None, num_classes])
# Reshape the image back into two dimensions so we can perform convolution.
x_image = tf.reshape(x, [-1, IMAGE_WIDTH, IMAGE_HEIGHT, 1])
# First convolutional layer. 32 feature maps.
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_conv1 = tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1],
padding='SAME')
h_conv1 = tf.nn.relu(x_conv1 + b_conv1)
# Max-pooling.
h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# Second convolutional layer. 64 feature maps.
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
x_conv2 = tf.nn.conv2d(h_pool1, W_conv2, strides=[1, 1, 1, 1],
padding='SAME')
h_conv2 = tf.nn.relu(x_conv2 + b_conv2)
h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# Third convolutional layer. 128 feature maps.
W_conv3 = weight_variable([3, 3, 64, 128])
b_conv3 = bias_variable([128])
x_conv3 = tf.nn.conv2d(h_pool2, W_conv3, strides=[1, 1, 1, 1],
padding='SAME')
h_conv3 = tf.nn.relu(x_conv3 + b_conv3)
h_pool3 = tf.nn.max_pool(h_conv3, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# Fully connected layer. Here we choose to have 1024 neurons in this layer.
h_pool_flat = tf.reshape(h_pool3, [-1, 8*8*128])
W_fc1 = weight_variable([8*8*128, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(h_pool_flat, W_fc1) + b_fc1)
# Dropout layer. This helps fight overfitting.
keep_prob = tf.placeholder(tf.float32, name=keep_prob_node_name)
h_fc1_drop = tf.nn.dropout(h_fc1, rate=1-keep_prob)
# Classification layer.
W_fc2 = weight_variable([1024, num_classes])
b_fc2 = bias_variable([num_classes])
y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
# This isn't used for training, but for when using the saved model.
tf.nn.softmax(y, name=output_node_name)
# Define our loss.
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(
labels=tf.stop_gradient(y_),
logits=y
)
)
# Define our optimizer for minimizing our loss. Here we choose a learning
# rate of 0.0001 with AdamOptimizer. This utilizes someting
# called the Adam algorithm, and utilizes adaptive learning rates and
# momentum to get past saddle points.
train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy)
# Define accuracy.
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction)
saver = tf.train.Saver()
with tf.Session() as sess:
# Initialize the variables.
sess.run(tf.global_variables_initializer())
checkpoint_file = os.path.join(model_output_dir, MODEL_NAME + '.chkp')
# Save the graph definition to a file.
tf.train.write_graph(sess.graph_def, model_output_dir,
MODEL_NAME + '.pbtxt', True)
try:
iterator = train_dataset.make_one_shot_iterator()
batch = iterator.get_next()
step = 0
while True:
# Get a batch of images and their corresponding labels.
train_images, train_labels = sess.run(batch)
# Perform the training step, feeding in the batches.
sess.run(train_step, feed_dict={x: train_images,
y_: train_labels,
keep_prob: 0.5})
if step % 100 == 0:
train_accuracy = sess.run(
accuracy,
feed_dict={x: train_images, y_: train_labels,
keep_prob: 1.0}
)
print("Step %d, Training Accuracy %g" %
(step, float(train_accuracy)))
# Every 10,000 iterations, we save a checkpoint of the model.
if step % 10000 == 0:
saver.save(sess, checkpoint_file, global_step=step)
step += 1
except tf.errors.OutOfRangeError:
pass
# Save a checkpoint after training has completed.
saver.save(sess, checkpoint_file)
# See how model did by running the testing set through the model.
print('Testing model...')
# Create testing dataset input pipeline.
test_dataset = tf.data.TFRecordDataset(test_data_files) \
.map(_parse_function) \
.batch(BATCH_SIZE) \
.prefetch(1)
# Define a different tensor operation for summing the correct
# predictions.
accuracy2 = tf.reduce_sum(correct_prediction)
total_correct_preds = 0
total_preds = 0
try:
iterator = test_dataset.make_one_shot_iterator()
batch = iterator.get_next()
while True:
test_images, test_labels = sess.run(batch)
acc = sess.run(accuracy2, feed_dict={x: test_images,
y_: test_labels,
keep_prob: 1.0})
total_preds += len(test_images)
total_correct_preds += acc
except tf.errors.OutOfRangeError:
pass
test_accuracy = total_correct_preds/total_preds
print("Testing Accuracy {}".format(test_accuracy))
export_model(model_output_dir, [input_node_name, keep_prob_node_name],
output_node_name)
sess.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--label-file', type=str, dest='label_file',
default=DEFAULT_LABEL_FILE,
help='File containing newline delimited labels.')
parser.add_argument('--tfrecords-dir', type=str, dest='tfrecords_dir',
default=DEFAULT_TFRECORDS_DIR,
help='Directory of TFRecords files.')
parser.add_argument('--output-dir', type=str, dest='output_dir',
default=DEFAULT_OUTPUT_DIR,
help='Output directory to store saved model files.')
parser.add_argument('--num-train-epochs', type=int,
dest='num_train_epochs',
default=DEFAULT_NUM_EPOCHS,
help='Number of times to iterate over all of the '
'training data.')
args = parser.parse_args()
main(args.label_file, args.tfrecords_dir,
args.output_dir, args.num_train_epochs)