-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcatalog.py
584 lines (509 loc) · 22.2 KB
/
catalog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
import astropy.coordinates as coord
from astropy.table import Table
from astropy import units as u
import astropy.io.fits as fits
# from astropy.constants import c
from astropy import stats
from astropy.io import ascii
from astroquery.jplhorizons import Horizons
from .io import FileOps
from .astronomy import FitsOps
from .astronomy import TimeOps
from .astronomy import AstCalc
import numpy as np
import sep
from os import system
import math
from astroquery.xmatch import XMatch
from astroquery.vizier import Vizier
import matplotlib.pyplot as plt
from sklearn.impute import SimpleImputer
from sklearn import linear_model, datasets
from pylab import rcParams
import os
import warnings
with warnings.catch_warnings():
warnings.simplefilter("ignore")
from .visuals import StarPlot
class Query:
def gaia_query(self, ra_deg, dec_deg, rad_deg, max_mag=20,
max_coo_err=1,
max_sources=100):
"""
Query Gaia DR1 @ VizieR using astroquery.vizier
parameters: ra_deg, dec_deg, rad_deg: RA, Dec, field
@param ra_deg: RA in degrees
@type ra_dec: float
@param dec_deg: DEC in degrees
@type dec_deg: float
@param max_mag: Limit G magnitude to be queried object(s)
@type max_mag: float
@max_coo_err: Max error of position
@type max_coo_err: float
@max_sources: Maximum number of sources
@type max_sources: int
@returns: astropy.table object
"""
vquery = Vizier(columns=['Source', 'RA_ICRS',
'DE_ICRS', 'e_RA_ICRS',
'e_DE_ICRS', 'phot_g_mean_mag',
'pmRA', 'pmDE',
'e_pmRA', 'e_pmDE',
'Epoch', 'Plx'],
column_filters={"phot_g_mean_mag":
("<{:f}".format(max_mag)),
"e_RA_ICRS":
("<{:f}".format(max_coo_err)),
"e_DE_ICRS":
("<{:f}".format(max_coo_err))},
row_limit=max_sources)
field = coord.SkyCoord(ra=ra_deg, dec=dec_deg,
unit=(u.deg, u.deg),
frame='icrs')
return (vquery.query_region(field,
width="{:f}d".format(rad_deg),
catalog="I/337/gaia")[0])
def match_catalog(self, file_name,
ra_keyword="ALPHA_J2000",
dec_keyword="DELTA_J2000",
catalogue='I/345/gaia2',
plot=False,
catalog_output=False, max_sources=None):
"""
Basic circular aperture photometry of given images.
Parameters
----------
file_name : file object
File name to be source extracted.
ra_keyword : str
RA keyword in catalogue.
Default is "ALPHA_J2000"
dec_keyword : str
DEC keyword in catalogue.
Default is "DEC_J2000"
catalogue : vizer catalogue object
Vizer catalogue name
Default is 'I/345/gaia2'.
plot: boolean
Shell we plot the correlation?
Returns
-------
'A dict object'
Examples
--------
>>> from astrolib import catalog
>>> from astrolib import astronomy
>>> from astropy.table import Table
>>> co = catalog.Query()
>>> ac = astronomy.AstCalc()
>>> c = ac.radec2wcs("21:05:15.250", "+07:52:6.734")
>>> ra_list_in_deg = [c.ra.degree]
>>> dec_list_in_deg = [c.dec.degree]
>>> phot_object = Table([ra_list_in_deg, dec_list_in_deg], names=("ALPHA_J2000", "DELTA_J2000"))
>>> co.match_catalog("file.fits", catalogue="II/336/apass9",
filter="Vmag",
phot_object=phot_object,
plot=True)
"""
fo = FitsOps(file_name)
ds = fo.source_extract()
table = XMatch.query(cat1=ds,
cat2='vizier:{}'.format(catalogue),
max_distance=5 * u.arcsec, colRA1=ra_keyword,
colDec1=dec_keyword)
if max_sources is not None:
table = table[:max_sources]
if catalog_output is True:
cat_file = os.path.splitext(file_name)[0]
ascii.write(table, "{}.csv".format(cat_file), format='csv', fast_writer=False)
if plot is True:
data = fo.hdu[0].data.astype(float)
splt = StarPlot()
splt.star_plot(data, table)
return table
def match_catalog_and_phot(self, file_name, ra_keyword="ALPHA_J2000",
dec_keyword="DELTA_J2000",
catalogue='I/345/gaia2',
filter=None,
phot_object=None,
phot_method=None,
plot=False,
catalog_output=False):
"""
Basic circular aperture photometry of given images.
Parameters
----------
file_name : file object
File name to be source extracted.
ra_keyword : str
RA keyword in catalogue.
Default is "ALPHA_J2000"
dec_keyword : str
DEC keyword in catalogue.
Default is "DEC_J2000"
catalogue : vizer catalogue object
Vizer catalogue name
Default is 'I/345/gaia2'.
filter : str
Filter of image.
Default is 'Vmag'.
phot_object : astropy table
Astropy table of objetcs that contains "ALPHA_J2000" and "DEC_J2000" columns.
Default is None.
phot_method : astropy table
MAG_AUTO or None
Default is None.
plot: boolean
Shell we plot the correlation?
Returns
-------
'A dict object'
Examples
--------
>>> from astrolib import catalog
>>> from astrolib import astronomy
>>> from astropy.table import Table
>>> co = catalog.Query()
>>> ac = astronomy.AstCalc()
>>> c = ac.radec2wcs("21:05:15.250", "+07:52:6.734")
>>> ra_list_in_deg = [c.ra.degree]
>>> dec_list_in_deg = [c.dec.degree]
>>> phot_object = Table([ra_list_in_deg, dec_list_in_deg], names=("ALPHA_J2000", "DELTA_J2000"))
>>> phot_method = "MAG_AUTO"
>>> co.match_catalog("file.fits", catalogue="II/336/apass9",
filter="Vmag",
phot_object=phot_object,
phot_method="MAG_AUTO",
plot=True)
"""
fo = FitsOps(file_name)
object_name = fo.get_header("OBJECT")
exptime = fo.get_header("EXPTIME")
telescope = fo.get_header("TELESCOP")
if filter is None:
filter = fo.get_header("FILTER")
if "T100" in telescope:
if "u" in filter:
filter = "upmag"
elif "g" in filter:
filter = "gpmag"
elif "r" in filter:
filter = "rpmag"
elif "i" in filter:
filter = "ipmag"
elif "z" in filter:
filter = "zpmag"
elif "U" in filter:
filter = "Umag"
elif "B" in filter:
filter = "Bmag"
elif "V" in filter:
filter = "Vmag"
elif "R" in filter:
filter = "Rmag"
elif "I" in filter:
filter = "Imag"
else:
raise SystemExit('Filter not found!')
ds = fo.source_extract()
table = XMatch.query(cat1=ds,
cat2='vizier:{}'.format(catalogue),
max_distance=5 * u.arcsec, colRA1=ra_keyword,
colDec1=dec_keyword)
print(table.colnames)
if phot_method is None:
phot_method = "MAG_AUTO"
table['deltaMag'] = table[filter] - table["MAG_AUTO"]
else:
table['deltaMag'] = table[filter] - table[phot_method]
mean, median, stddev = stats.sigma_clipped_stats(table['deltaMag'], sigma=2, maxiters=5)
linear_zero_point = None
linear_r2 = None
ransac_r2 = None
ransac_zero_point = None
linear_calibrated_mag = []
ransac_calibrated_mag = []
if "FLUX" in phot_method:
X = np.log10(np.asarray(table[phot_method]).reshape(-1, 1))
else:
X = np.asarray(table[phot_method]).reshape(-1, 1)
y_ = np.asarray(table[filter]).reshape(-1, 1)
imputer = SimpleImputer()
y = imputer.fit_transform(y_)
# Fit line using all data
lr = linear_model.LinearRegression()
lr.fit(X, y)
# Robustly fit linear model with RANSAC algorithm
ransac = linear_model.RANSACRegressor()
ransac.fit(X, y)
inlier_mask = ransac.inlier_mask_
outlier_mask = np.logical_not(inlier_mask)
# Predict data of estimated models
line_X = np.arange(X.min(), X.max())[:, np.newaxis]
line_y = lr.predict(line_X)
line_y_ransac = ransac.predict(line_X)
# Compare estimated coefficients
# linear_zero_point = lr.intercept_
# linear_slope = lr.coef_
ransac_slope = ransac.estimator_.coef_
ransac_zero_point = ransac.estimator_.intercept_
if phot_object is not None:
phot_object[ra_keyword].unit = u.deg
phot_object[dec_keyword].unit = u.deg
for object in phot_object:
c = coord.SkyCoord(object[ra_keyword], object[dec_keyword], frame="icrs", unit="deg")
catalog = coord.SkyCoord(ds[ra_keyword], ds[dec_keyword], frame="icrs", unit="deg")
max_sep = 1.0 * u.arcsec
idx, d2d, d3d = c.match_to_catalog_3d(catalog)
sep_constraint = d2d < max_sep
to_be_calibrated_table = ds[idx]
# linear_calibrated_mag.append(
# lr.predict(np.asarray(to_be_calibrated_table[phot_method]).reshape(-1, 1)))
ransac_calibrated_mag.append(
ransac.predict(np.asarray(to_be_calibrated_table[phot_method]).reshape(-1, 1)))
else:
linear_calibrated_mag = [None]
ransac_calibrated_mag = [None]
if plot is True:
lw = 2
rcParams['figure.figsize'] = 8, 8
plt.scatter(X[inlier_mask], y[inlier_mask], color='yellowgreen', marker='.',
label='Inliers')
plt.scatter(X[outlier_mask], y[outlier_mask], color='gold', marker='.',
label='Outliers')
# plt.plot(line_X, line_y, color='navy', linewidth=lw, label='Linear regressor')
plt.plot(line_X, line_y_ransac, color='cornflowerblue', linewidth=lw,
label='RANSAC regressor')
plt.legend(loc='lower right')
plt.title('{} ({} - {}), {} seconds'.format(object_name, catalogue, filter, exptime))
if "FLUX" in phot_method:
plt.xlabel(phot_method + " (log)")
else:
plt.xlabel(phot_method)
plt.ylabel(filter)
# plt.xscale('log')
plt.show()
if catalog_output is True:
cat_file = os.path.splitext(file_name)[0]
np.savetxt("{}_ransac_inst_vs_cat.csv".format(cat_file),
np.concatenate((X[inlier_mask], y[inlier_mask]), axis=1), delimiter=",")
ascii.write(table, "{}.csv".format(cat_file), format='csv', fast_writer=False)
try:
ransac_calibrated_mag_result = ransac_calibrated_mag[0][0][0]
except TypeError:
ransac_calibrated_mag_result = None
return ({'table': table[phot_method, "MAGERR_AUTO", filter],
'astropy_zero_point': median,
'ransac_zero_point': ransac_zero_point[0],
'ransac_slope': ransac_slope[0][0],
'stddev': stddev,
'std_error': stddev / math.sqrt(len(X[inlier_mask])),
'ransac_calibrated_mag': ransac_calibrated_mag_result,
'ransac_calibrated_mag_err': "{}".format(stddev / math.sqrt(len(X[inlier_mask]))),
'ransac_equation': "{}X + {}".format(ransac_slope[0][0], ransac_zero_point[0]),
})
def get_sso_ephem(self, name, epoch_start, epoch_end, epoch_step="1min", location="A84"):
"""Instantiate JPL query.
Parameters
----------
name : str, required
Name, number, or designation of the object to be queried
location : str or dict, optional
Observer's location for ephemerides queries or center body
name for orbital element or vector queries. Uses the same
codes as JPL Horizons. If no location is provided, Earth's
center is used for ephemerides queries and the Sun's
center for elements and vectors queries. Arbitrary topocentic
coordinates for ephemerides queries can be provided in the
format of a dictionary. The
dictionary has to be of the form {``'lon'``: longitude in
deg (East positive, West negative), ``'lat'``: latitude in
deg (North positive, South negative), ``'elevation'``:
elevation in km above the reference ellipsoid, [``'body'``:
Horizons body ID of the central body; optional; if this value
is not provided it is assumed that this location is on Earth]}.
epochs : scalar, list-like, or dictionary, optional
Either a list of epochs in JD or MJD format or a dictionary
defining a range of times and dates; the range dictionary has to
be of the form {``'start'``:'YYYY-MM-DD [HH:MM:SS]',
``'stop'``:'YYYY-MM-DD [HH:MM:SS]', ``'step'``:'n[y|d|m|s]'}.
Epoch timescales depend on the type of query performed: UTC for
ephemerides queries, TDB for element queries, CT for vector queries.
If no epochs are provided, the current time is used.
id_type : str, optional
Identifier type, options:
``'smallbody'``, ``'majorbody'`` (planets but also
anything that is not a small body), ``'designation'``,
``'name'``, ``'asteroid_name'``, ``'comet_name'``,
``'id'`` (Horizons id number), or ``'smallbody'`` (find the
closest match under any id_type), default: ``'smallbody'``
Examples
--------
>>> from astroquery.jplhorizons import Horizons
>>> eros = Horizons(id='433', location='568',
... epochs={'start':'2017-01-01',
... 'stop':'2017-02-01',
... 'step':'1d'})
>>> print(eros) # doctest: +SKIP
JPLHorizons instance "433"; location=568, epochs={'start': '2017-01-01', 'step': '1d', 'stop': '2017-02-01'}, id_type=smallbody
"""
obj = Horizons(id=name, location=location,
epochs={'start': '{}'.format(epoch_start), 'stop': '{}'.format(epoch_end),
'step': '{}'.format(epoch_step)})
eph = obj.ephemerides()
return eph
def find_skybot_objects(self,
odate,
ra,
dec,
radius=16,
time_travel=0,
observatory="A84"):
"""
Seek and identify all the known solar system objects
in a field of view of a given size.
@param odate: Observation date.
@type odate: date
@param ra: RA of field center for search, format: degrees or hh:mm:ss
@type ra: str
@param dec: DEC of field center for search, format: degrees or hh:mm:ss
@type dec: str
@param radius: Radius.
@type radius: float
@param time_travel: Jump into time after given date (in hour).
@type time_travel: float
@param observatory: Observation code.
@type observatory: str
@return: str
"""
while True:
try:
to = TimeOps()
fo = FileOps()
epoch = to.date2jd(odate) + time_travel / 24.0
bashcmd = ("wget -q \"http://vo.imcce.fr/webservices/skybot/"
"skybotconesearch_query.php"
"?-ep={0}&-ra={1}&-dec={2}&-rm={3}&-output=object&"
"-loc={4}&-filter=120&-objFilter=120&-from="
"SkybotDoc&-mime=text\" -O skybot.cat").format(
epoch,
ra,
dec,
radius,
observatory)
system(bashcmd)
skyresult = fo.read_file_as_array("skybot.cat")
system('rm -rf skybot.cat')
if "No solar system object was found" not in str(skyresult):
tskyresult = Table(skyresult,
names=('num',
'name',
'ra(h)',
'dec(deg)',
'class',
'm_v',
'err(arcsec)',
'd(arcsec)'))
return (True, tskyresult)
else:
return (False, str(skyresult))
except:
print("\nConnection Failed, Retrying..")
continue
break
def known_mo_position(self, image_path=None,
ra=None,
dec=None,
odate=None,
radi=16,
max_mag=21):
ac = AstCalc()
if image_path:
fo = FitsOps(image_path)
if not odate:
odate = fo.get_header('date-obs')
else:
odate = odate
ra_dec = ac.center_finder(image_path, wcs_ref=True)
elif not image_path and ra and dec and odate:
co = coord.SkyCoord('{0} {1}'.format(ra, dec),
unit=(u.hourangle, u.deg),
frame='icrs')
print('Target Coordinates:',
co.to_string(style='hmsdms', sep=':'),
'in {0} arcmin'.format(radi))
ra_dec = [co.ra, co.dec]
request0 = self.find_skybot_objects(odate,
ra_dec[0].degree,
ra_dec[1].degree,
radius=radi)
if request0[0]:
asteroids = request0[1]
elif request0[0] is False:
print(request0[1])
return False
asteroids['ra_deg'] = coord.Angle(asteroids["ra(h)"], unit=u.hour)
asteroids['dec_deg'] = coord.Angle(asteroids["dec(deg)"], unit=u.deg)
return asteroids
# This code adapted from vvv:
# https://github.com/MichalZG/AsteroidsPhot/blob/master/starscoordinates.py
def query_color(self,
ra,
dec,
radius=0.01,
min_mag=10,
max_mag=20,
max_sources=100):
"""
Query NOMAD object
@param ra: RA of field center for search, format: degrees or hh:mm:ss
@type ra: str
@param dec: DEC of field center for search, format: degrees or hh:mm:ss
@type dec: str
@param radius: Radius.
@type radius: float
@param min_mag: Minimum magnitude value of query.
@type min_mag: float
@param max_mag: Maximum magnitude value of query.
@type max_mag: float
@param max_sources: Maximum strs to be queried..
@type max_sources: int
@return: astropy.table
"""
c = coord.SkyCoord(ra,
dec,
unit=(u.deg, u.deg),
frame='icrs')
r = radius * u.deg
vquery = Vizier(columns=['NOMAD1',
'RAJ2000',
'DEJ2000',
'Bmag',
'Vmag',
'Rmag'],
column_filters={"Rmag":
(">{:f}".format(min_mag)),
"Rmag":
("<{:f}".format(max_mag))},
row_limit=max_sources)
result = vquery.query_region(c, radius=r, catalog="NOMAD")[0]
return (result)
# sorts list of stars (puts the best for being comparise stars in the first place)
def sort_stars(self, starstable, min_mag):
starstable = starstable[starstable['Rmag'] > min_mag]
starstable['Bmag'].fill_value = 0.0
starstable['Vmag'].fill_value = 0.0
starstable['Rmag'].fill_value = 0.0
starstable = starstable.filled()
starstable = starstable[starstable['Bmag'] != 0]
starstable = starstable[starstable['Vmag'] != 0]
starstable = starstable[starstable['Rmag'] != 0]
starstable['b-v'] = starstable['Bmag'] - starstable['Vmag']
starstable['v-r'] = starstable['Vmag'] - starstable['Rmag']
starstable['sortby'] = abs(starstable['b-v'] -
0.656) + abs(starstable['v-r'] - 0.4)
if len(starstable) > 0:
return (Table(np.sort(starstable, order=['sortby'])))
else:
print("No proper comparison star(s) found!")
raise SystemExit