-
Notifications
You must be signed in to change notification settings - Fork 382
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Llava在重新读取预处理器的时候报错 #177
Comments
额,你这个llavanext吧?和llava是不一样的。(我不确定奥) |
llava 和llavanext我都试啦,这个其实就是llava1.5和llava1.6, 1.6主要就是预处理的图像size不太一样。原版的llava我也试了,也是一样的错误才去试llavanext的 |
请问您的transformers版本是多少哇,是不是这个的原因,我直接down下来notebook来运行qwen4b 一行一行执行也会报同样的错误,感觉是环境的问题。 |
看了一下,可能是transformers版本不一样,我这里是 absl-py==2.0.0
accelerate==0.30.1
addict==2.4.0
aiofiles==23.2.1
aiohttp==3.8.6
aiohttp-cors==0.7.0
aioprometheus==23.12.0
aiorwlock==1.4.0
aiosignal==1.3.1
aliyun-python-sdk-core==2.14.0
aliyun-python-sdk-kms==2.16.2
altair==5.1.2
amqp==5.2.0
annotated-types==0.6.0
anyio==3.7.1
argon2-cffi==23.1.0
argon2-cffi-bindings==21.2.0
arrow==1.3.0
asttokens==2.4.1
async-lru==2.0.4
async-timeout==4.0.3
attrs==23.1.0
Babel==2.13.1
beautifulsoup4==4.12.2
beir==2.0.0
billiard==4.2.0
bitsandbytes==0.42.0
bleach==6.1.0
blessed==1.20.0
blinker==1.7.0
Brotli @ file:///tmp/abs_ecyw11_7ze/croots/recipe/brotli-split_1659616059936/work
C-MTEB==1.1.1
cachetools==5.3.2
cchardet==2.1.7
celery==5.3.6
certifi @ file:///croot/certifi_1690232220950/work/certifi
cffi @ file:///croot/cffi_1670423208954/work
chardet==5.2.0
charset-normalizer @ file:///tmp/build/80754af9/charset-normalizer_1630003229654/work
click==8.1.7
click-didyoumean==0.3.0
click-plugins==1.1.1
click-repl==0.3.0
cloudpickle==3.0.0
colorama==0.4.6
coloredlogs==15.0.1
colorful==0.5.6
comm==0.1.4
contourpy==1.2.0
crcmod==1.7
cryptography @ file:///croot/cryptography_1694444244250/work
cupy-cuda12x==12.1.0
cycler==0.12.1
datasets==2.14.6
debugpy==1.8.1
decorator==5.1.1
deepspeed==0.14.0
defusedxml==0.7.1
dill==0.3.7
diskcache==5.6.3
distlib==0.3.8
distro==1.9.0
docopt==0.6.2
einops==0.7.0
elastic-transport==8.13.1
elasticsearch==7.9.1
elasticsearch-dsl==8.11.0
emoji==2.8.0
et-xmlfile==1.1.0
evaluate==0.4.1
exceptiongroup==1.1.3
executing==2.0.1
faiss-cpu==1.7.4
fastapi==0.104.1
fastjsonschema==2.18.1
fastrlock==0.8.2
ffmpy==0.3.2
filelock==3.13.1
Flask==3.0.0
flatbuffers==23.5.26
fonttools==4.47.2
fqdn==1.5.1
frozenlist==1.4.0
fsspec==2023.10.0
gast==0.5.4
gitdb==4.0.11
GitPython==3.1.40
gmpy2 @ file:///tmp/build/80754af9/gmpy2_1645455533097/work
google-api-core==2.16.1
google-auth==2.25.2
google-auth-oauthlib==1.2.0
googleapis-common-protos==1.62.0
gpustat==1.1.1
gradio==4.23.0
gradio_client==0.14.0
grpcio==1.60.0
h11==0.14.0
hjson==3.1.0
hnswlib==0.8.0
httpcore==1.0.1
httptools==0.6.1
httpx==0.25.1
huggingface-hub==0.23.2
humanfriendly==10.0
idna @ file:///croot/idna_1666125576474/work
importlib-metadata==6.8.0
importlib_resources==6.4.0
interegular==0.3.3
ipykernel==6.26.0
ipython==8.17.2
ipython-genutils==0.2.0
ipywidgets==8.1.1
isoduration==20.11.0
itsdangerous==2.1.2
jedi==0.19.1
jieba==0.42.1
Jinja2 @ file:///croot/jinja2_1666908132255/work
jmespath==0.10.0
joblib==1.3.2
json5==0.9.14
jsonlines==4.0.0
jsonpointer==2.4
jsonschema==4.19.2
jsonschema-specifications==2023.7.1
jupyter==1.0.0
jupyter-console==6.6.3
jupyter-events==0.8.0
jupyter-lsp==2.2.0
jupyter_client==8.5.0
jupyter_core==5.5.0
jupyter_server==2.9.1
jupyter_server_terminals==0.4.4
jupyterlab==4.0.7
jupyterlab-pygments==0.2.2
jupyterlab-widgets==3.0.9
jupyterlab_server==2.25.0
kiwisolver==1.4.5
kombu==5.3.4
lark==1.1.9
llvmlite==0.42.0
Markdown==3.5.1
markdown-it-py==3.0.0
MarkupSafe @ file:///opt/conda/conda-bld/markupsafe_1654597864307/work
matplotlib==3.8.2
matplotlib-inline==0.1.6
mdurl==0.1.2
mistune==3.0.2
mkl-fft @ file:///croot/mkl_fft_1695058164594/work
mkl-random @ file:///croot/mkl_random_1695059800811/work
mkl-service==2.4.0
modelscope==1.11.0
mpmath @ file:///croot/mpmath_1690848262763/work
msgpack==1.0.7
mteb==1.1.1
multidict==6.0.4
multiprocess==0.70.15
nbclient==0.8.0
nbconvert==7.10.0
nbformat==5.9.2
nest-asyncio==1.5.8
networkx @ file:///croot/networkx_1690561992265/work
ninja==1.11.1.1
nltk==3.8.1
notebook==7.0.6
notebook_shim==0.2.3
numba==0.59.1
numpy @ file:///croot/numpy_and_numpy_base_1695830428084/work/dist/numpy-1.26.0-cp310-cp310-linux_x86_64.whl#sha256=fc2732718bc9e06a7b702492cb4f5afffe9671083930452d894377bf563464a3
nvidia-cublas-cu11==11.11.3.6
nvidia-cublas-cu12==12.1.3.1
nvidia-cuda-cupti-cu11==11.8.87
nvidia-cuda-cupti-cu12==12.1.105
nvidia-cuda-nvrtc-cu11==11.8.89
nvidia-cuda-nvrtc-cu12==12.1.105
nvidia-cuda-runtime-cu11==11.8.89
nvidia-cuda-runtime-cu12==12.1.105
nvidia-cudnn-cu11==8.7.0.84
nvidia-cudnn-cu12==8.9.2.26
nvidia-cufft-cu11==10.9.0.58
nvidia-cufft-cu12==11.0.2.54
nvidia-curand-cu11==10.3.0.86
nvidia-curand-cu12==10.3.2.106
nvidia-cusolver-cu11==11.4.1.48
nvidia-cusolver-cu12==11.4.5.107
nvidia-cusparse-cu11==11.7.5.86
nvidia-cusparse-cu12==12.1.0.106
nvidia-ml-py==12.535.133
nvidia-nccl-cu11==2.19.3
nvidia-nccl-cu12==2.18.1
nvidia-nvjitlink-cu12==12.3.101
nvidia-nvtx-cu11==11.8.86
nvidia-nvtx-cu12==12.1.105
nvitop==1.3.1
oauthlib==3.2.2
onnx==1.15.0
onnxruntime==1.16.3
onnxruntime-gpu==1.16.3
openai==1.14.3
opencensus==0.11.4
opencensus-context==0.1.3
openpyxl==3.1.2
optimum==1.16.2
orjson==3.9.15
oss2==2.18.4
outlines==0.0.37
overrides==7.4.0
packaging==23.2
pandas==2.1.2
pandocfilters==1.5.0
parso==0.8.3
peft==0.9.0
pexpect==4.8.0
Pillow @ file:///croot/pillow_1696580024257/work
pipreqs==0.4.13
platformdirs==3.11.0
prometheus-client==0.18.0
prompt-toolkit==3.0.39
protobuf==4.23.4
psutil==5.9.6
ptyprocess==0.7.0
pure-eval==0.2.2
py-cpuinfo==9.0.0
py-spy==0.3.14
pyarrow==13.0.0
pyasn1==0.5.1
pyasn1-modules==0.3.0
pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work
pycryptodome==3.20.0
pydantic==2.6.4
pydantic_core==2.16.3
pydeck==0.8.1b0
pydub==0.25.1
Pygments==2.16.1
PyJWT==2.8.0
pynvml==11.5.0
pyOpenSSL @ file:///croot/pyopenssl_1690223430423/work
pyparsing==3.1.1
PySocks @ file:///home/builder/ci_310/pysocks_1640793678128/work
python-dateutil==2.8.2
python-dotenv==1.0.1
python-json-logger==2.0.7
python-multipart==0.0.9
pytrec-eval==0.5
pytz==2023.3.post1
PyYAML @ file:///croot/pyyaml_1698096049011/work
pyzmq==25.1.1
qtconsole==5.4.4
QtPy==2.4.1
quantile-python==1.1
rank-bm25==0.2.2
ray==2.9.1
redis==5.0.1
referencing==0.30.2
regex==2023.10.3
replicate==0.17.0
requests @ file:///croot/requests_1690400202158/work
requests-oauthlib==1.3.1
responses==0.18.0
rfc3339-validator==0.1.4
rfc3986-validator==0.1.1
rich==13.6.0
rpds-py==0.10.6
rsa==4.9
ruff==0.3.4
safetensors==0.4.2
scikit-learn==1.3.2
scipy==1.11.3
semantic-version==2.10.0
Send2Trash==1.8.2
sentence-transformers==3.0.0
sentencepiece==0.1.99
shellingham==1.5.4
simplejson==3.19.2
six==1.16.0
smart-open==6.4.0
smmap==5.0.1
sniffio==1.3.0
sortedcontainers==2.4.0
soupsieve==2.5
sse-starlette==1.8.1
stack-data==0.6.3
starlette==0.27.0
streamlit==1.30.0
sympy @ file:///croot/sympy_1668202399572/work
tabulate==0.9.0
tenacity==8.2.3
tensorboard==2.16.2
tensorboard-data-server==0.7.2
tensorboardX==2.6.2.2
termcolor==2.3.0
terminado==0.17.1
threadpoolctl==3.2.0
tiktoken==0.5.2
timm==0.9.12
tinycss2==1.2.1
tokenizers==0.19.1
toml==0.10.2
tomli==2.0.1
tomlkit==0.12.0
toolz==0.12.0
torch==2.1.0
torchaudio==2.1.0
torchvision==0.16.0
tornado==6.3.3
tqdm==4.66.1
traitlets==5.13.0
transformers==4.41.1
transformers-stream-generator==0.0.4
triton==2.1.0
typer==0.9.4
types-python-dateutil==2.8.19.14
typing_extensions @ file:///croot/typing_extensions_1690297465030/work
tzdata==2023.3
tzlocal==5.2
uniem==0.3.3
uri-template==1.3.0
urllib3 @ file:///croot/urllib3_1698257533958/work
uvicorn==0.24.0.post1
uvloop==0.19.0
validators==0.22.0
vine==5.1.0
virtualenv==20.25.0
vllm==0.3.3
watchdog==3.0.0
watchfiles==0.21.0
wcwidth==0.2.9
webcolors==1.13
webencodings==0.5.1
websocket-client==1.6.4
websockets==11.0.3
Werkzeug==3.0.1
widgetsnbextension==4.0.9
xformers==0.0.23.post1
XlsxWriter==3.1.9
xxhash==3.4.1
yapf==0.40.2
yarg==0.1.9
yarl==1.9.2
zhipuai==2.0.1
zipp==3.17.0
|
你好,老师,我升级到了4.41.2,然后已经可以了。因为我的环境是之前安装的,所以transformers版本有些滞后会有这个问题。 |
在将模型保存下来后然后重新读取的时候,读取预处理器会报错。下边是错误内容,transformers版本为4.40.1, torch版本为2.0.1+cuda11.8, 设备为移动端RTX4080, 请问是tranformers版本的问题吗?那么我安装哪个版本呢?
{
"name": "TypeError",
"message": "not a string",
"stack": "---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[2], line 1
----> 1 llava_processor = LlavaNextProcessor.from_pretrained(
2 "LlavaNext1.6-Qwen1.5-0.5B-Chat/model001"
3 )
File c:\Users\zhiyuanUSYD\miniconda3\envs\autoGluon\lib\site-packages\transformers\processing_utils.py:465, in ProcessorMixin.from_pretrained(cls, pretrained_model_name_or_path, cache_dir, force_download, local_files_only, token, revision, **kwargs)
462 if token is not None:
463 kwargs["token"] = token
--> 465 args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
466 processor_dict, kwargs = cls.get_processor_dict(pretrained_model_name_or_path, **kwargs)
468 return cls.from_args_and_dict(args, processor_dict, **kwargs)
File c:\Users\zhiyuanUSYD\miniconda3\envs\autoGluon\lib\site-packages\transformers\processing_utils.py:511, in ProcessorMixin._get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs)
508 else:
509 attribute_class = getattr(transformers_module, class_name)
--> 511 args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
512 return args
File c:\Users\zhiyuanUSYD\miniconda3\envs\autoGluon\lib\site-packages\transformers\tokenization_utils_base.py:2089, in PreTrainedTokenizerBase.from_pretrained(cls, pretrained_model_name_or_path, cache_dir, force_download, local_files_only, token, revision, trust_remote_code, *init_inputs, **kwargs)
2086 else:
2087 logger.info(f"loading file {file_path} from cache at {resolved_vocab_files[file_id]}")
-> 2089 return cls._from_pretrained(
2090 resolved_vocab_files,
2091 pretrained_model_name_or_path,
2092 init_configuration,
2093 *init_inputs,
2094 token=token,
2095 cache_dir=cache_dir,
2096 local_files_only=local_files_only,
2097 _commit_hash=commit_hash,
2098 _is_local=is_local,
2099 trust_remote_code=trust_remote_code,
2100 **kwargs,
2101 )
File c:\Users\zhiyuanUSYD\miniconda3\envs\autoGluon\lib\site-packages\transformers\tokenization_utils_base.py:2311, in PreTrainedTokenizerBase._from_pretrained(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, token, cache_dir, local_files_only, _commit_hash, _is_local, trust_remote_code, *init_inputs, **kwargs)
2309 # Instantiate the tokenizer.
2310 try:
-> 2311 tokenizer = cls(*init_inputs, **init_kwargs)
2312 except OSError:
2313 raise OSError(
2314 "Unable to load vocabulary from file. "
2315 "Please check that the provided vocabulary is accessible and not corrupted."
2316 )
File c:\Users\zhiyuanUSYD\miniconda3\envs\autoGluon\lib\site-packages\transformers\models\llama\tokenization_llama_fast.py:124, in LlamaTokenizerFast.init(self, vocab_file, tokenizer_file, clean_up_tokenization_spaces, unk_token, bos_token, eos_token, add_bos_token, add_eos_token, use_default_system_prompt, add_prefix_space, **kwargs)
119 logger.warning_once(
120 "You set
add_prefix_space
. The tokenizer needs to be converted from the slow tokenizers"121 )
122 kwargs["from_slow"] = True
--> 124 super().init(
125 vocab_file=vocab_file,
126 tokenizer_file=tokenizer_file,
127 clean_up_tokenization_spaces=clean_up_tokenization_spaces,
128 unk_token=unk_token,
129 bos_token=bos_token,
130 eos_token=eos_token,
131 add_bos_token=add_bos_token,
132 add_eos_token=add_eos_token,
133 use_default_system_prompt=use_default_system_prompt,
134 **kwargs,
135 )
136 self._add_bos_token = add_bos_token
137 self._add_eos_token = add_eos_token
File c:\Users\zhiyuanUSYD\miniconda3\envs\autoGluon\lib\site-packages\transformers\tokenization_utils_fast.py:117, in PreTrainedTokenizerFast.init(self, *args, **kwargs)
114 fast_tokenizer = convert_slow_tokenizer(slow_tokenizer)
115 elif self.slow_tokenizer_class is not None:
116 # We need to create and convert a slow tokenizer to build the backend
--> 117 slow_tokenizer = self.slow_tokenizer_class(*args, **kwargs)
118 fast_tokenizer = convert_slow_tokenizer(slow_tokenizer)
119 else:
File c:\Users\zhiyuanUSYD\miniconda3\envs\autoGluon\lib\site-packages\transformers\models\llama\tokenization_llama.py:169, in LlamaTokenizer.init(self, vocab_file, unk_token, bos_token, eos_token, pad_token, sp_model_kwargs, add_bos_token, add_eos_token, clean_up_tokenization_spaces, use_default_system_prompt, spaces_between_special_tokens, legacy, add_prefix_space, **kwargs)
167 self.add_eos_token = add_eos_token
168 self.use_default_system_prompt = use_default_system_prompt
--> 169 self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
170 self.add_prefix_space = add_prefix_space
172 super().init(
173 bos_token=bos_token,
174 eos_token=eos_token,
(...)
185 **kwargs,
186 )
File c:\Users\zhiyuanUSYD\miniconda3\envs\autoGluon\lib\site-packages\transformers\models\llama\tokenization_llama.py:196, in LlamaTokenizer.get_spm_processor(self, from_slow)
194 tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
195 if self.legacy or from_slow: # no dependency on protobuf
--> 196 tokenizer.Load(self.vocab_file)
197 return tokenizer
199 with open(self.vocab_file, "rb") as f:
File c:\Users\zhiyuanUSYD\miniconda3\envs\autoGluon\lib\site-packages\sentencepiece\init.py:961, in SentencePieceProcessor.Load(self, model_file, model_proto)
959 if model_proto:
960 return self.LoadFromSerializedProto(model_proto)
--> 961 return self.LoadFromFile(model_file)
File c:\Users\zhiyuanUSYD\miniconda3\envs\autoGluon\lib\site-packages\sentencepiece\init.py:316, in SentencePieceProcessor.LoadFromFile(self, arg)
315 def LoadFromFile(self, arg):
--> 316 return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg)
TypeError: not a string"
}
The text was updated successfully, but these errors were encountered: