forked from hidasib/GRU4Rec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gru4rec.py
685 lines (675 loc) · 39.1 KB
/
gru4rec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 22 15:14:20 2015
@author: Balázs Hidasi
"""
import theano
from theano import tensor as T
from theano import function
from theano.sandbox.rng_mrg import MRG_RandomStreams
import numpy as np
import pandas as pd
from collections import OrderedDict
mrng = MRG_RandomStreams()
from gpu_ops import gpu_diag_wide
class GRU4Rec:
'''
GRU4Rec(loss='bpr-max', final_act='elu-1', hidden_act='tanh', layers=[100],
n_epochs=10, batch_size=32, dropout_p_hidden=0.0, dropout_p_embed=0.0, learning_rate=0.1, momentum=0.0, lmbd=0.0, embedding=0, n_sample=2048, sample_alpha=0.75, smoothing=0.0, constrained_embedding=False,
adapt='adagrad', adapt_params=[], grad_cap=0.0, bpreg=1.0,
sigma=0.0, init_as_normal=False, train_random_order=False, time_sort=True,
session_key='SessionId', item_key='ItemId', time_key='Time')
Initializes the network.
Parameters
-----------
loss : 'top1', 'bpr', 'cross-entropy', 'xe_logit', 'top1-max', 'bpr-max'
selects the loss function (default : 'bpr-max')
final_act : 'softmax', 'linear', 'relu', 'tanh', 'softmax_logit', 'leaky-<X>', 'elu-<X>', 'selu-<X>-<Y>'
selects the activation function of the final layer, <X> and <Y> are the parameters of the activation function (default : 'elu-1')
hidden_act : 'linear', 'relu', 'tanh', 'leaky-<X>', 'elu-<X>', 'selu-<X>-<Y>'
selects the activation function on the hidden states, <X> and <Y> are the parameters of the activation function (default : 'tanh')
layers : list of int values
list of the number of GRU units in the layers (default : [100])
n_epochs : int
number of training epochs (default: 10)
batch_size : int
size of the minibacth, also effect the number of negative samples through minibatch based sampling (default: 32)
dropout_p_hidden : float
probability of dropout of hidden units (default: 0.0)
dropout_p_embed : float
probability of dropout of the input units, applicable only if embeddings are used (default: 0.0)
learning_rate : float
learning rate (default: 0.05)
momentum : float
if not zero, Nesterov momentum will be applied during training with the given strength (default: 0.0)
lmbd : float
coefficient of the L2 regularization (default: 0.0)
embedding : int
size of the embedding used, 0 means not to use embedding (default: 0)
n_sample : int
number of additional negative samples to be used (besides the other examples of the minibatch) (default: 2048)
sample_alpha : float
the probability of an item used as an additional negative sample is supp^sample_alpha (default: 0.75)
(e.g.: sample_alpha=1 --> popularity based sampling; sample_alpha=0 --> uniform sampling)
smoothing : float
(only works with cross-entropy and xe_logit losses) if set to non-zero class labels are smoothed with this value, i.e. the expected utput is (e/N, ..., e/N, 1-e+e/N, e/N, ..., e/N) instead of (0, ..., 0, 1, 0, ..., 0), where N is the number of outputs and e is the smoothing value (default: 0.0)
constrained_embedding : bool
if True, the output weight matrix is also used as input embedding (default: False)
adapt : None, 'adagrad', 'rmsprop', 'adam', 'adadelta'
sets the appropriate learning rate adaptation strategy, use None for standard SGD (default: 'adagrad')
adapt_params : list
parameters for the adaptive learning methods (default: [])
grad_cap : float
clip gradients that exceede this value to this value, 0 means no clipping (default: 0.0)
bpreg : float
score regularization coefficient for the BPR-max loss function (default: 1.0)
sigma : float
"width" of initialization; either the standard deviation or the min/max of the init interval (with normal and uniform initializations respectively); 0 means adaptive normalization (sigma depends on the size of the weight matrix); (default: 0.0)
init_as_normal : boolean
False: init from uniform distribution on [-sigma,sigma]; True: init from normal distribution N(0,sigma); (default: False)
train_random_order : boolean
whether to randomize the order of sessions in each epoch (default: False)
time_sort : boolean
whether to ensure the the order of sessions is chronological (default: True)
session_key : string
header of the session ID column in the input file (default: 'SessionId')
item_key : string
header of the item ID column in the input file (default: 'ItemId')
time_key : string
header of the timestamp column in the input file (default: 'Time')
'''
def __init__(self, loss='bpr-max', final_act='linear', hidden_act='tanh', layers=[100],
n_epochs=10, batch_size=32, dropout_p_hidden=0.0, dropout_p_embed=0.0, learning_rate=0.1, momentum=0.0, lmbd=0.0, embedding=0, n_sample=2048, sample_alpha=0.75, smoothing=0.0, constrained_embedding=False,
adapt='adagrad', adapt_params=[], grad_cap=0.0, bpreg=1.0,
sigma=0.0, init_as_normal=False, train_random_order=False, time_sort=True,
session_key='SessionId', item_key='ItemId', time_key='Time'):
self.layers = layers
self.n_epochs = n_epochs
self.batch_size = batch_size
self.dropout_p_hidden = dropout_p_hidden
self.dropout_p_embed = dropout_p_embed
self.learning_rate = learning_rate
self.adapt_params = adapt_params
self.momentum = momentum
self.sigma = sigma
self.init_as_normal = init_as_normal
self.session_key = session_key
self.item_key = item_key
self.time_key = time_key
self.grad_cap = grad_cap
self.bpreg = bpreg
self.train_random_order = train_random_order
self.lmbd = lmbd
self.embedding = embedding
self.constrained_embedding = constrained_embedding
self.time_sort = time_sort
self.adapt = adapt
self.loss = loss
self.set_loss_function(self.loss)
self.final_act = final_act
self.set_final_activation(self.final_act)
self.hidden_act = hidden_act
self.set_hidden_activation(self.hidden_act)
self.n_sample = n_sample
self.sample_alpha = sample_alpha
self.smoothing = smoothing
def set_loss_function(self, loss):
if loss == 'cross-entropy': self.loss_function = self.cross_entropy
elif loss == 'bpr': self.loss_function = self.bpr
elif loss == 'bpr-max': self.loss_function = self.bpr_max
elif loss == 'top1': self.loss_function = self.top1
elif loss == 'top1-max':
self.loss_function = self.top1_max
elif loss == 'xe_logit': self.loss_function = self.cross_entropy_logits
else: raise NotImplementedError
def set_final_activation(self, final_act):
if final_act == 'linear': self.final_activation = self.linear
elif final_act == 'relu': self.final_activation = self.relu
elif final_act == 'softmax': self.final_activation=self.softmax
elif final_act == 'tanh': self.final_activation=self.tanh
elif final_act == 'softmax_logit': self.final_activation=self.softmax_logit
elif final_act.startswith('leaky-'): self.final_activation = self.LeakyReLU(float(final_act.split('-')[1])).execute
elif final_act.startswith('elu-'): self.final_activation = self.Elu(float(final_act.split('-')[1])).execute
elif final_act.startswith('selu-'): self.final_activation = self.Selu(*[float(x) for x in final_act.split('-')[1:]]).execute
else: raise NotImplementedError
def set_hidden_activation(self, hidden_act):
if hidden_act == 'relu': self.hidden_activation = self.relu
elif hidden_act == 'tanh': self.hidden_activation = self.tanh
elif hidden_act == 'linear': self.hidden_activation = self.linear
elif hidden_act.startswith('leaky-'): self.hidden_activation = self.LeakyReLU(float(hidden_act.split('-')[1])).execute
elif hidden_act.startswith('elu-'): self.hidden_activation = self.Elu(float(hidden_act.split('-')[1])).execute
elif hidden_act.startswith('selu-'): self.hidden_activation = self.Selu(*[float(x) for x in hidden_act.split('-')[1:]]).execute
else: raise NotImplementedError
def set_params(self, **kvargs):
maxk_len = np.max([len(x) for x in kvargs.keys()])
maxv_len = np.max([len(x) for x in kvargs.values()])
for k,v in kvargs.items():
if not hasattr(self, k):
print('Unkown attribute: {}'.format(k))
raise NotImplementedError
else:
if k == 'adapt_params': v = [float(l) for l in v.split('/')]
elif type(getattr(self, k)) == list: v = [int(l) for l in v.split('/')]
if type(getattr(self, k)) == bool:
if v == 'True' or v == '1': v = True
elif v == 'False' or v == '0': v = False
else:
print('Invalid value for boolean parameter: {}'.format(v))
raise NotImplementedError
setattr(self, k, type(getattr(self, k))(v))
if k == 'loss': self.set_loss_function(self.loss)
if k == 'final_act': self.set_final_activation(self.final_act)
if k == 'hidden_act': self.set_hidden_activation(self.hidden_act)
print('SET {}{}TO {}{}(type: {})'.format(k, ' '*(maxk_len-len(k)+3), getattr(self, k), ' '*(maxv_len-len(str(getattr(self, k)))+3), type(getattr(self, k))))
######################ACTIVATION FUNCTIONS#####################
def linear(self,X):
return X
def tanh(self,X):
return T.tanh(X)
def softmax(self,X):
e_x = T.exp(X - X.max(axis=1).dimshuffle(0, 'x'))
return e_x / e_x.sum(axis=1).dimshuffle(0, 'x')
def softmax_logit(self, X):
X = X - X.max(axis=1).dimshuffle(0, 'x')
return T.log(T.exp(X).sum(axis=1).dimshuffle(0, 'x')) - X
def softmax_neg(self, X):
hm = 1.0 - T.eye(*X.shape)
X = X * hm
e_x = T.exp(X - X.max(axis=1).dimshuffle(0, 'x')) * hm
return e_x / e_x.sum(axis=1).dimshuffle(0, 'x')
def relu(self,X):
return T.maximum(X, 0)
def sigmoid(self, X):
return T.nnet.sigmoid(X)
class Selu:
def __init__(self, lmbd, alpha):
self.lmbd = lmbd
self.alpha = alpha
def execute(self, X):
return self.lmbd * T.switch(T.ge(X, 0), X, self.alpha * (T.exp(X) - 1))
class Elu:
def __init__(self, alpha):
self.alpha = alpha
def execute(self, X):
return T.switch(T.ge(X, 0), X, self.alpha * (T.exp(X) - 1))
class LeakyReLU:
def __init__(self, leak):
self.leak = leak
def execute(self, X):
return T.switch(T.ge(X, 0), X, self.leak * X)
#################################LOSS FUNCTIONS################################
def cross_entropy(self, yhat, M):
if self.smoothing:
n_out = M + self.n_sample
return T.cast(T.mean((1.0-(n_out/(n_out-1))*self.smoothing) * (-T.log(gpu_diag_wide(yhat)+1e-24)) + (self.smoothing/(n_out-1)) * T.sum(-T.log(yhat+1e-24), axis=1)), theano.config.floatX)
else:
return T.cast(T.mean(-T.log(gpu_diag_wide(yhat)+1e-24)), theano.config.floatX)
def cross_entropy_logits(self, yhat, M):
if self.smoothing:
n_out = M + self.n_sample
return T.cast(T.mean((1.0-(n_out/(n_out-1))*self.smoothing) * gpu_diag_wide(yhat) + (self.smoothing/(n_out-1)) * T.sum(yhat, axis=1)), theano.config.floatX)
else:
return T.cast(T.mean(gpu_diag_wide(yhat)), theano.config.floatX)
def bpr(self, yhat, M):
return T.cast(T.mean(-T.log(T.nnet.sigmoid(gpu_diag_wide(yhat).dimshuffle((0, 'x'))-yhat))), theano.config.floatX)
def bpr_max(self, yhat, M):
softmax_scores = self.softmax_neg(yhat)
return T.cast(T.mean(-T.log(T.sum(T.nnet.sigmoid(gpu_diag_wide(yhat).dimshuffle((0,'x'))-yhat)*softmax_scores, axis=1)+1e-24)+self.bpreg*T.sum((yhat**2)*softmax_scores, axis=1)), theano.config.floatX)
def top1(self, yhat, M):
ydiag = gpu_diag_wide(yhat).dimshuffle((0, 'x'))
return T.cast(T.mean(T.mean(T.nnet.sigmoid(-ydiag+yhat)+T.nnet.sigmoid(yhat**2), axis=1)-T.nnet.sigmoid(ydiag**2)/(M+self.n_sample)), theano.config.floatX)
def top1_max(self, yhat, M):
softmax_scores = self.softmax_neg(yhat)
y = softmax_scores*(T.nnet.sigmoid(-gpu_diag_wide(yhat).dimshuffle((0, 'x'))+yhat)+T.nnet.sigmoid(yhat**2))
return T.cast(T.mean(T.sum(y, axis=1)), theano.config.floatX)
###############################################################################
def floatX(self, X):
return np.asarray(X, dtype=theano.config.floatX)
def init_weights(self, shape, name=None):
return theano.shared(self.init_matrix(shape), borrow=True, name=name)
def init_matrix(self, shape):
if self.sigma != 0: sigma = self.sigma
else: sigma = np.sqrt(6.0 / (shape[0] + shape[1]))
if self.init_as_normal:
return self.floatX(np.random.randn(*shape) * sigma)
else:
return self.floatX(np.random.rand(*shape) * sigma * 2 - sigma)
def extend_weights(self, W, n_new):
matrix = W.get_value()
sigma = self.sigma if self.sigma != 0 else np.sqrt(6.0 / (matrix.shape[0] + matrix.shape[1] + n_new))
if self.init_as_normal: new_rows = self.floatX(np.random.randn(n_new, matrix.shape[1]) * sigma)
else: new_rows = self.floatX(np.random.rand(n_new, matrix.shape[1]) * sigma * 2 - sigma)
W.set_value(np.vstack([matrix, new_rows]))
def init(self, data):
data.sort_values([self.session_key, self.time_key], inplace=True)
offset_sessions = np.zeros(data[self.session_key].nunique()+1, dtype=np.int32)
offset_sessions[1:] = data.groupby(self.session_key).size().cumsum()
np.random.seed(42)
self.Wx, self.Wh, self.Wrz, self.Bh, self.H = [], [], [], [], []
if self.constrained_embedding:
n_features = self.layers[-1]
elif self.embedding:
self.E = self.init_weights((self.n_items, self.embedding), name='E')
n_features = self.embedding
else:
n_features = self.n_items
for i in range(len(self.layers)):
m = []
m.append(self.init_matrix((self.layers[i-1] if i > 0 else n_features, self.layers[i])))
m.append(self.init_matrix((self.layers[i-1] if i > 0 else n_features, self.layers[i])))
m.append(self.init_matrix((self.layers[i-1] if i > 0 else n_features, self.layers[i])))
self.Wx.append(theano.shared(value=np.hstack(m), borrow=True, name='Wx{}'.format(i))) #For compatibility's sake
self.Wh.append(self.init_weights((self.layers[i], self.layers[i]), name='Wh{}'.format(i)))
m2 = []
m2.append(self.init_matrix((self.layers[i], self.layers[i])))
m2.append(self.init_matrix((self.layers[i], self.layers[i])))
self.Wrz.append(theano.shared(value=np.hstack(m2), borrow=True, name='Wrz{}'.format(i))) #For compatibility's sake
self.Bh.append(theano.shared(value=np.zeros((self.layers[i] * 3,), dtype=theano.config.floatX), borrow=True, name='Bh{}'.format(i)))
self.H.append(theano.shared(value=np.zeros((self.batch_size,self.layers[i]), dtype=theano.config.floatX), borrow=True, name='H{}'.format(i)))
self.Wy = self.init_weights((self.n_items, self.layers[-1]), name='Wy')
self.By = theano.shared(value=np.zeros((self.n_items,1), dtype=theano.config.floatX), borrow=True, name='By')
return offset_sessions
def dropout(self, X, drop_p):
if drop_p > 0:
retain_prob = 1 - drop_p
X *= mrng.binomial(X.shape, p=retain_prob, dtype=theano.config.floatX) / retain_prob
return X
def adam(self, param, grad, updates, sample_idx = None, epsilon = 1e-6):
v1 = np.float32(self.adapt_params[0])
v2 = np.float32(1.0 - self.adapt_params[0])
v3 = np.float32(self.adapt_params[1])
v4 = np.float32(1.0 - self.adapt_params[1])
acc = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
meang = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
countt = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
if sample_idx is None:
acc_new = v3 * acc + v4 * (grad**2)
meang_new = v1 * meang + v2 * grad
countt_new = countt + 1
updates[acc] = acc_new
updates[meang] = meang_new
updates[countt] = countt_new
else:
acc_s = acc[sample_idx]
meang_s = meang[sample_idx]
countt_s = countt[sample_idx]
# acc_new = v3 * acc_s + v4 * (grad**2) #Faster, but inaccurate when an index occurs multiple times
# updates[acc] = T.set_subtensor(acc_s, acc_new) #Faster, but inaccurate when an index occurs multiple times
updates[acc] = T.inc_subtensor(T.set_subtensor(acc_s, acc_s * v3)[sample_idx], v4 * (grad**2)) #Slower, but accurate when an index occurs multiple times
acc_new = updates[acc][sample_idx] #Slower, but accurate when an index occurs multiple times
# meang_new = v1 * meang_s + v2 * grad
# updates[meang] = T.set_subtensor(meang_s, meang_new) #Faster, but inaccurate when an index occurs multiple times
updates[meang] = T.inc_subtensor(T.set_subtensor(meang_s, meang_s * v1)[sample_idx], v2 * (grad**2)) #Slower, but accurate when an index occurs multiple times
meang_new = updates[meang][sample_idx] #Slower, but accurate when an index occurs multiple times
countt_new = countt_s + 1.0
updates[countt] = T.set_subtensor(countt_s, countt_new)
return (meang_new / (1 - v1**countt_new)) / (T.sqrt(acc_new / (1 - v1**countt_new)) + epsilon)
def adagrad(self, param, grad, updates, sample_idx = None, epsilon = 1e-6):
acc = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
if sample_idx is None:
acc_new = acc + grad ** 2
updates[acc] = acc_new
else:
acc_s = acc[sample_idx]
acc_new = acc_s + grad ** 2
updates[acc] = T.set_subtensor(acc_s, acc_new)
gradient_scaling = T.cast(T.sqrt(acc_new + epsilon), theano.config.floatX)
return grad / gradient_scaling
def adadelta(self, param, grad, updates, sample_idx = None, epsilon = 1e-6):
v1 = np.float32(self.adapt_params[0])
v2 = np.float32(1.0 - self.adapt_params[0])
acc = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
upd = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
if sample_idx is None:
acc_new = v1 * acc + v2 * (grad**2)
updates[acc] = acc_new
grad_scaling = (upd + epsilon) / (acc_new + epsilon)
upd_new = v1 * upd + v2 * grad_scaling * (grad**2)
updates[upd] = upd_new
else:
acc_s = acc[sample_idx]
# acc_new = v1 * acc_s + v2 * (grad**2) #Faster, but inaccurate when an index occurs multiple times
# updates[acc] = T.set_subtensor(acc_s, acc_new) #Faster, but inaccurate when an index occurs multiple times
updates[acc] = T.inc_subtensor(T.set_subtensor(acc_s, acc_s * v1)[sample_idx], v2 * (grad**2)) #Slower, but accurate when an index occurs multiple times
acc_new = updates[acc][sample_idx] #Slower, but accurate when an index occurs multiple times
upd_s = upd[sample_idx]
grad_scaling = (upd_s + epsilon) / (acc_new + epsilon)
# updates[upd] = T.set_subtensor(upd_s, v1 * upd_s + v2 * grad_scaling * (grad**2)) #Faster, but inaccurate when an index occurs multiple times
updates[upd] = T.inc_subtensor(T.set_subtensor(upd_s, upd_s * v1)[sample_idx], v2 * grad_scaling * (grad**2)) #Slower, but accurate when an index occurs multiple times
gradient_scaling = T.cast(T.sqrt(grad_scaling), theano.config.floatX)
if self.learning_rate != 1.0:
print('Warn: learning_rate is not 1.0 while using adadelta. Setting learning_rate to 1.0')
self.learning_rate = 1.0
return grad * gradient_scaling #Ok, checked
def rmsprop(self, param, grad, updates, sample_idx = None, epsilon = 1e-6):
v1 = np.float32(self.adapt_params[0])
v2 = np.float32(1.0 - self.adapt_params[0])
acc = theano.shared(param.get_value(borrow=False) * 0., borrow=True)
if sample_idx is None:
acc_new = v1 * acc + v2 * grad ** 2
updates[acc] = acc_new
else:
acc_s = acc[sample_idx]
# acc_new = v1 * acc_s + v2 * grad ** 2 #Faster, but inaccurate when an index occurs multiple times
# updates[acc] = T.set_subtensor(acc_s, acc_new) #Faster, but inaccurate when an index occurs multiple times
updates[acc] = T.inc_subtensor(T.set_subtensor(acc_s, acc_s * v1)[sample_idx], v2 * grad ** 2) #Slower, but accurate when an index occurs multiple times
acc_new = updates[acc][sample_idx] #Slower, but accurate when an index occurs multiple times
gradient_scaling = T.cast(T.sqrt(acc_new + epsilon), theano.config.floatX)
return grad / gradient_scaling
def RMSprop(self, cost, params, full_params, sampled_params, sidxs, epsilon=1e-6):
grads = [T.grad(cost = cost, wrt = param) for param in params]
sgrads = [T.grad(cost = cost, wrt = sparam) for sparam in sampled_params]
updates = OrderedDict()
if self.grad_cap>0:
norm=T.cast(T.sqrt(T.sum([T.sum([T.sum(g**2) for g in g_list]) for g_list in grads]) + T.sum([T.sum(g**2) for g in sgrads])), theano.config.floatX)
grads = [[T.switch(T.ge(norm, self.grad_cap), g*self.grad_cap/norm, g) for g in g_list] for g_list in grads]
sgrads = [T.switch(T.ge(norm, self.grad_cap), g*self.grad_cap/norm, g) for g in sgrads]
for p_list, g_list in zip(params, grads):
for p, g in zip(p_list, g_list):
if self.adapt == 'adagrad':
g = self.adagrad(p, g, updates)
elif self.adapt == 'rmsprop':
g = self.rmsprop(p, g, updates)
elif self.adapt == 'adadelta':
g = self.adadelta(p, g, updates)
elif self.adapt == 'adam':
g = self.adam(p, g, updates)
if self.momentum > 0:
velocity = theano.shared(p.get_value(borrow=False) * 0., borrow=True)
velocity2 = self.momentum * velocity - np.float32(self.learning_rate) * (g + self.lmbd * p)
updates[velocity] = velocity2
updates[p] = p + velocity2
else:
updates[p] = p * np.float32(1.0 - self.learning_rate * self.lmbd) - np.float32(self.learning_rate) * g
for i in range(len(sgrads)):
g = sgrads[i]
fullP = full_params[i]
sample_idx = sidxs[i]
sparam = sampled_params[i]
if self.adapt == 'adagrad':
g = self.adagrad(fullP, g, updates, sample_idx)
elif self.adapt == 'rmsprop':
g = self.rmsprop(fullP, g, updates, sample_idx)
elif self.adapt == 'adadelta':
g = self.adadelta(fullP, g, updates, sample_idx)
elif self.adapt == 'adam':
g = self.adam(fullP, g, updates, sample_idx)
if self.lmbd > 0:
delta = np.float32(self.learning_rate) * (g + self.lmbd * sparam)
else:
delta = np.float32(self.learning_rate) * g
if self.momentum > 0:
velocity = theano.shared(fullP.get_value(borrow=False) * 0., borrow=True)
vs = velocity[sample_idx]
velocity2 = self.momentum * vs - delta
updates[velocity] = T.set_subtensor(vs, velocity2)
updates[fullP] = T.inc_subtensor(sparam, velocity2)
else:
updates[fullP] = T.inc_subtensor(sparam, - delta)
return updates
def model(self, X, H, M, R=None, Y=None, drop_p_hidden=0.0, drop_p_embed=0.0, predict=False):
sparams, full_params, sidxs = [], [], []
if self.constrained_embedding:
if Y is not None: X = T.concatenate([X,Y], axis=0)
S = self.Wy[X]
Sx = S[:M]
Sy = S[M:]
y = self.dropout(Sx, drop_p_embed)
H_new = []
start = 0
sparams.append(S)
full_params.append(self.Wy)
sidxs.append(X)
elif self.embedding:
Sx = self.E[X]
y = self.dropout(Sx, drop_p_embed)
H_new = []
start = 0
sparams.append(Sx)
full_params.append(self.E)
sidxs.append(X)
else:
Sx = self.Wx[0][X]
vec = Sx + self.Bh[0]
rz = T.nnet.sigmoid(vec[:,self.layers[0]:] + T.dot(H[0], self.Wrz[0]))
h = self.hidden_activation(T.dot(H[0] * rz[:,:self.layers[0]], self.Wh[0]) + vec[:,:self.layers[0]])
z = rz[:,self.layers[0]:]
h = (1.0-z)*H[0] + z*h
h = self.dropout(h, drop_p_hidden)
y = h
H_new = [T.switch(R.dimshuffle((0, 'x')), 0, h) if not predict else h]
start = 1
sparams.append(Sx)
full_params.append(self.Wx[0])
sidxs.append(X)
for i in range(start, len(self.layers)):
vec = T.dot(y, self.Wx[i]) + self.Bh[i]
rz = T.nnet.sigmoid(vec[:,self.layers[i]:] + T.dot(H[i], self.Wrz[i]))
h = self.hidden_activation(T.dot(H[i] * rz[:,:self.layers[i]], self.Wh[i]) + vec[:,:self.layers[i]])
z = rz[:,self.layers[i]:]
h = (1.0-z)*H[i] + z*h
h = self.dropout(h, drop_p_hidden)
y = h
H_new.append(T.switch(R.dimshuffle((0, 'x')), 0, h) if not predict else h)
if Y is not None:
if (not self.constrained_embedding) or predict:
Sy = self.Wy[Y]
sparams.append(Sy)
full_params.append(self.Wy)
sidxs.append(Y)
SBy = self.By[Y]
sparams.append(SBy)
full_params.append(self.By)
sidxs.append(Y)
if predict and self.final_act == 'softmax_logit':
y = self.softmax(T.dot(y, Sy.T) + SBy.flatten())
else:
y = self.final_activation(T.dot(y, Sy.T) + SBy.flatten())
return H_new, y, sparams, full_params, sidxs
else:
if predict and self.final_act == 'softmax_logit':
y = self.softmax(T.dot(y, self.Wy.T) + self.By.flatten())
else:
y = self.final_activation(T.dot(y, self.Wy.T) + self.By.flatten())
return H_new, y, sparams, full_params, sidxs
def generate_neg_samples(self, pop, length):
if self.sample_alpha:
sample = np.searchsorted(pop, np.random.rand(self.n_sample * length))
else:
sample = np.random.choice(self.n_items, size=self.n_sample * length)
if length > 1:
sample = sample.reshape((length, self.n_sample))
return sample
def fit(self, data, sample_store=10000000):
'''
Trains the network.
Parameters
--------
data : pandas.DataFrame
Training data. It contains the transactions of the sessions. It has one column for session IDs, one for item IDs and one for the timestamp of the events (unix timestamps).
It must have a header. Column names are arbitrary, but must correspond to the ones you set during the initialization of the network (session_key, item_key, time_key properties).
sample_store : int
If additional negative samples are used (n_sample > 0), the efficiency of GPU utilization can be sped up, by precomputing a large batch of negative samples (and recomputing when necessary).
This parameter regulizes the size of this precomputed ID set. Its value is the maximum number of int values (IDs) to be stored. Precomputed IDs are stored in the RAM.
For the most efficient computation, a balance must be found between storing few examples and constantly interrupting GPU computations for a short time vs. computing many examples and interrupting GPU computations for a long time (but rarely).
'''
self.predict = None
self.error_during_train = False
itemids = data[self.item_key].unique()
self.n_items = len(itemids)
self.itemidmap = pd.Series(data=np.arange(self.n_items), index=itemids)
data = pd.merge(data, pd.DataFrame({self.item_key:itemids, 'ItemIdx':self.itemidmap[itemids].values}), on=self.item_key, how='inner')
offset_sessions = self.init(data)
if self.n_sample:
pop = data.groupby('ItemId').size()
pop = pop[self.itemidmap.index.values].values**self.sample_alpha
pop = pop.cumsum() / pop.sum()
pop[-1] = 1
if sample_store:
generate_length = sample_store // self.n_sample
if generate_length <= 1:
sample_store = 0
print('No example store was used')
else:
neg_samples = self.generate_neg_samples(pop, generate_length)
sample_pointer = 0
else:
print('No example store was used')
X = T.ivector()
Y = T.ivector()
M = T.iscalar()
R = T.bvector()
H_new, Y_pred, sparams, full_params, sidxs = self.model(X, self.H, M, R, Y, self.dropout_p_hidden, self.dropout_p_embed)
cost = (M/self.batch_size) * self.loss_function(Y_pred, M)
params = [self.Wx if self.embedding or self.constrained_embedding else self.Wx[1:], self.Wh, self.Wrz, self.Bh]
updates = self.RMSprop(cost, params, full_params, sparams, sidxs)
for i in range(len(self.H)):
updates[self.H[i]] = H_new[i]
train_function = function(inputs=[X, Y, M, R], outputs=cost, updates=updates, allow_input_downcast=True)
base_order = np.argsort(data.groupby(self.session_key)[self.time_key].min().values) if self.time_sort else np.arange(len(offset_sessions)-1)
data_items = data.ItemIdx.values
for epoch in range(self.n_epochs):
for i in range(len(self.layers)):
self.H[i].set_value(np.zeros((self.batch_size,self.layers[i]), dtype=theano.config.floatX), borrow=True)
c = []
cc = []
session_idx_arr = np.random.permutation(len(offset_sessions)-1) if self.train_random_order else base_order
iters = np.arange(self.batch_size)
maxiter = iters.max()
start = offset_sessions[session_idx_arr[iters]]
end = offset_sessions[session_idx_arr[iters]+1]
finished = False
while not finished:
minlen = (end-start).min()
out_idx = data_items[start]
for i in range(minlen-1):
in_idx = out_idx
out_idx = data_items[start+i+1]
if self.n_sample:
if sample_store:
if sample_pointer == generate_length:
neg_samples = self.generate_neg_samples(pop, generate_length)
sample_pointer = 0
sample = neg_samples[sample_pointer]
sample_pointer += 1
else:
sample = self.generate_neg_samples(pop, 1)
y = np.hstack([out_idx, sample])
else:
y = out_idx
if self.n_sample:
if sample_pointer == generate_length:
generate_samples()
sample_pointer = 0
sample_pointer += 1
reset = (start+i+1 == end-1)
cost = train_function(in_idx, y, len(iters), reset)
c.append(cost)
cc.append(len(iters))
if np.isnan(cost):
print(str(epoch) + ': NaN error!')
self.error_during_train = True
return
start = start+minlen-1
finished_mask = (end-start<=1)
n_finished = finished_mask.sum()
iters[finished_mask] = maxiter + np.arange(1,n_finished+1)
maxiter += n_finished
valid_mask = (iters < len(offset_sessions)-1)
n_valid = valid_mask.sum()
if (n_valid == 0) or (n_valid < 2 and self.n_sample == 0):
finished = True
break
mask = finished_mask & valid_mask
sessions = session_idx_arr[iters[mask]]
start[mask] = offset_sessions[sessions]
end[mask] = offset_sessions[sessions+1]
iters = iters[valid_mask]
start = start[valid_mask]
end = end[valid_mask]
if n_valid < len(valid_mask):
for i in range(len(self.H)):
tmp = self.H[i].get_value(borrow=True)
tmp = tmp[valid_mask]
self.H[i].set_value(tmp, borrow=True)
c = np.array(c)
cc = np.array(cc)
avgc = np.sum(c * cc) / np.sum(cc)
if np.isnan(avgc):
print('Epoch {}: NaN error!'.format(str(epoch)))
self.error_during_train = True
return
print('Epoch{}\tloss: {:.6f}'.format(epoch, avgc))
def predict_next_batch(self, session_ids, input_item_ids, predict_for_item_ids=None, batch=100):
'''
Gives predicton scores for a selected set of items. Can be used in batch mode to predict for multiple independent events (i.e. events of different sessions) at once and thus speed up evaluation.
If the session ID at a given coordinate of the session_ids parameter remains the same during subsequent calls of the function, the corresponding hidden state of the network will be kept intact (i.e. that's how one can predict an item to a session).
If it changes, the hidden state of the network is reset to zeros.
Parameters
--------
session_ids : 1D array
Contains the session IDs of the events of the batch. Its length must equal to the prediction batch size (batch param).
input_item_ids : 1D array
Contains the item IDs of the events of the batch. Every item ID must be must be in the training data of the network. Its length must equal to the prediction batch size (batch param).
predict_for_item_ids : 1D array (optional)
IDs of items for which the network should give prediction scores. Every ID must be in the training set. The default value is None, which means that the network gives prediction on its every output (i.e. for all items in the training set).
batch : int
Prediction batch size.
Returns
--------
out : pandas.DataFrame
Prediction scores for selected items for every event of the batch.
Columns: events of the batch; rows: items. Rows are indexed by the item IDs.
'''
if self.error_during_train: raise Exception
if self.predict is None or self.predict_batch!=batch:
self.predict_batch = batch
X = T.ivector()
Y = T.ivector()
M = T.iscalar() if self.constrained_embedding or (predict_for_item_ids is not None) else None
for i in range(len(self.layers)):
self.H[i].set_value(np.zeros((batch,self.layers[i]), dtype=theano.config.floatX), borrow=True)
if predict_for_item_ids is not None:
H_new, yhat, _, _, _ = self.model(X, self.H, M, Y=Y, predict=True)
else:
H_new, yhat, _, _, _ = self.model(X, self.H, M, predict=True)
updatesH = OrderedDict()
for i in range(len(self.H)):
updatesH[self.H[i]] = H_new[i]
if predict_for_item_ids is not None:
if self.constrained_embedding: self.predict = function(inputs=[X, Y, M], outputs=yhat, updates=updatesH, allow_input_downcast=True)
else: self.predict = function(inputs=[X, Y], outputs=yhat, updates=updatesH, allow_input_downcast=True)
else:
if self.constrained_embedding: self.predict = function(inputs=[X, M], outputs=yhat, updates=updatesH, allow_input_downcast=True)
else: self.predict = function(inputs=[X], outputs=yhat, updates=updatesH, allow_input_downcast=True)
self.current_session = np.ones(batch) * -1
session_change = np.arange(batch)[session_ids != self.current_session]
if len(session_change) > 0:
for i in range(len(self.H)):
tmp = self.H[i].get_value(borrow=True)
tmp[session_change] = 0
self.H[i].set_value(tmp, borrow=True)
self.current_session=session_ids.copy()
in_idxs = self.itemidmap[input_item_ids]
if predict_for_item_ids is not None:
iIdxs = self.itemidmap[predict_for_item_ids]
if self.constrained_embedding: preds = np.asarray(self.predict(in_idxs, iIdxs, batch)).T
else: preds = np.asarray(self.predict(in_idxs, iIdxs)).T
return pd.DataFrame(data=preds, index=predict_for_item_ids)
else:
if self.constrained_embedding: preds = np.asarray(self.predict(in_idxs, batch)).T
else: preds = np.asarray(self.predict(in_idxs)).T
return pd.DataFrame(data=preds, index=self.itemidmap.index)
def symbolic_predict(self, X, Y, M, items, batch_size):
if not self.constrained_embedding: M = None
H = []
for i in range(len(self.layers)):
H.append(theano.shared(np.zeros((batch_size, self.layers[i]), dtype=theano.config.floatX)))
if items is not None:
H_new, yhat, _, _, _ = self.model(X, H, M, Y=Y, predict=True)
else:
H_new, yhat, _, _, _ = self.model(X, H, M, predict=True)
updatesH = OrderedDict()
for i in range(len(H)):
updatesH[H[i]] = H_new[i]
return yhat, H, updatesH