forked from geoschem/FVdycoreCubed_GridComp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dyn_interp_rst.F90
executable file
·800 lines (702 loc) · 30.2 KB
/
dyn_interp_rst.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
program dyn_interp_rst
!--------------------------------------------------------------------!
! purpose: driver for interpolation between two cubed sphere grids !
! with different spatial resolution for GEOS restarts !
!--------------------------------------------------------------------!
use ESMF
! Cube to Cube Utilities
use CUB2CUB_mod, only : get_c2c_weight, do_c2c_interpolation
use MAPL_ConstantsMod, only : pi=> MAPL_PI
use fv_grid_utils_mod, only : gnomonic_grids
use fv_grid_tools_mod, only : mirror_grid
use GHOST_CUBSPH_mod, only : B_grid, A_grid, ghost_cubsph_update
! Lat-lon to Cube Utilities
use fms_mod, only: fms_init, fms_end
use fv_arrays_mod, only: fv_atmos_type
use fv_control_mod, only: npx,npy,npz, ntiles
use fv_control_mod, only: fv_init, fv_end
use fv_mp_mod, only: gid, masterproc, tile, mp_gather
use fv_grid_tools_mod, only: grid, agrid, area, dx, dy, dxc, dyc
use fv_surf_map_mod, only: map_to_cubed_simple
use external_ic_mod, only: cubed_a2d
implicit none
integer :: npx_in
integer :: npy_in
integer :: npx_out
integer :: npy_out
integer :: npts
integer :: ndims=2
real(ESMF_KIND_R8), allocatable :: xs(:,:), ys(:,:)
real(ESMF_KIND_R8), allocatable :: grid_in(:,:,:,:)
real(ESMF_KIND_R8), allocatable :: grid_out(:,:,:,:)
real(ESMF_KIND_R8), allocatable :: corner_in(:,:,:,:)
real(ESMF_KIND_R8), allocatable :: corner_out(:,:,:,:)
real(ESMF_KIND_R8), allocatable :: weight_c2c(:,:,:,:)
integer, allocatable :: index_c2c(:,:,:,:)
real(ESMF_KIND_R8) :: dlon, dlat
real(ESMF_KIND_R4), allocatable :: r4latlon(:,:)
real(ESMF_KIND_R8), allocatable :: r8latlon(:,:)
real(ESMF_KIND_R8), allocatable :: r8tmp(:,:)
real(ESMF_KIND_R8), allocatable :: r8_global(:,:,:)
real(ESMF_KIND_R8), allocatable :: varo(:,:)
type(fv_atmos_type) :: Atm(1)
real(ESMF_KIND_R8), allocatable :: ua(:,:,:)
real(ESMF_KIND_R8), allocatable :: va(:,:,:)
real(ESMF_KIND_R8), allocatable :: ud(:,:,:)
real(ESMF_KIND_R8), allocatable :: vd(:,:,:)
real(ESMF_KIND_R8), allocatable :: ak(:), bk(:)
integer :: IUNIT=15
integer :: OUNIT=16
integer :: header(6)
integer :: grid_type = 0
integer :: i,j,l,k,j1,j2,status
character(30) :: myName
character(30) :: str_arg
external :: getarg, iargc
integer iargc
if (IARGC() /= 5) then
print*, 'ABORT: need 5 arguments input_res_x,input_res_y and output_res_x,output_res_y and levels (No vertical interp supported yet)'
stop
endif
CALL GETARG(1, str_arg)
read (str_arg,'(I10)') npx_in
CALL GETARG(2, str_arg)
read (str_arg,'(I10)') npy_in
CALL GETARG(3, str_arg)
read (str_arg,'(I10)') npx_out
CALL GETARG(4, str_arg)
read (str_arg,'(I10)') npy_out
CALL GETARG(5, str_arg)
read (str_arg,'(I10)') npz
print*, npx_in, npx_out, npz
if (npx_in == npy_in) then ! Cube to Cube
!--------------------------------------------------------------------!
! initialize Input cubed sphere grid !
!--------------------------------------------------------------------!
ntiles=6
npts = npx_in+1
allocate( xs(npts,npts) )
allocate( ys(npts,npts) )
allocate( grid_in(npts,npts,ndims,ntiles) )
call gnomonic_grids(grid_type, npts-1, xs, ys)
do j=1,npts
do i=1,npts
grid_in(i,j,1,1) = xs(i,j)
grid_in(i,j,2,1) = ys(i,j)
enddo
enddo
deallocate ( xs )
deallocate ( ys )
! mirror_grid assumes that the tile=1 is centered on equator and greenwich meridian Lon[-pi,pi]
call mirror_grid(grid_in, npts, npts, 2, 6)
allocate( corner_in(ndims,0:npts+1,0:npts+1,ntiles) )
corner_in(1,1:npts,1:npts,:) = grid_in(:,:,1,:)
corner_in(2,1:npts,1:npts,:) = grid_in(:,:,2,:)
!------------------------------------------------------------------!
! do halo update !
!------------------------------------------------------------------!
do l=1,ntiles
corner_in(1:2,0 ,0 ,l)=0.
corner_in(1:2,npts+1,0 ,l)=0.
corner_in(1:2,0 ,npts+1,l)=0.
corner_in(1:2,npts+1,npts+1,l)=0.
call ghost_cubsph_update(corner_in(1,0:npts+1,0:npts+1,:), 0, npts+1, 0, npts+1, 1, &
1, ntiles, 1, 1, l, B_grid)
call ghost_cubsph_update(corner_in(2,0:npts+1,0:npts+1,:), 0, npts+1, 0, npts+1, 1, &
1, ntiles, 1, 1, l, B_grid)
enddo
deallocate (grid_in)
!--------------------------------------------------------------------!
! initialize Output cubed sphere grid !
!--------------------------------------------------------------------!
npts = npx_out+1
allocate( xs(npts,npts) )
allocate( ys(npts,npts) )
allocate( grid_out(npts,npts,ndims,ntiles) )
call gnomonic_grids(grid_type, npts-1, xs, ys)
do j=1,npts
do i=1,npts
grid_out(i,j,1,1) = xs(i,j)
grid_out(i,j,2,1) = ys(i,j)
enddo
enddo
deallocate ( xs )
deallocate ( ys )
! mirror_grid assumes that the tile=1 is centered on equator and greenwich meridian Lon[-pi,pi]
call mirror_grid(grid_out, npts, npts, 2, 6)
allocate( corner_out(ndims,0:npts+1,0:npts+1,ntiles) )
corner_out(1,1:npts,1:npts,:) = grid_out(:,:,1,:)
corner_out(2,1:npts,1:npts,:) = grid_out(:,:,2,:)
!------------------------------------------------------------------!
! do halo update !
!------------------------------------------------------------------!
do l=1,ntiles
corner_out(1:2,0 ,0 ,l)=0.
corner_out(1:2,npts+1,0 ,l)=0.
corner_out(1:2,0 ,npts+1,l)=0.
corner_out(1:2,npts+1,npts+1,l)=0.
call ghost_cubsph_update(corner_out(1,0:npts+1,0:npts+1,:), 0, npts+1, 0, npts+1, 1, &
1, ntiles, 1, 1, l, B_grid)
call ghost_cubsph_update(corner_out(2,0:npts+1,0:npts+1,:), 0, npts+1, 0, npts+1, 1, &
1, ntiles, 1, 1, l, B_grid)
enddo
deallocate (grid_out)
!--------------------------------------------------------------------!
! calculate weights and indices from bilinear interpolation !
! from grid_in to grid_out !
!--------------------------------------------------------------------!
allocate(index_c2c (3, npx_out, npy_out, ntiles))
allocate(weight_c2c(4, npx_out, npy_out, ntiles))
call get_c2c_weight(ntiles, npx_in+1, npy_in+1, corner_in, &
npx_out+1, npy_out+1, corner_out, &
index_c2c, weight_c2c)
open(IUNIT,file='fvcore_internal_restart_in' ,access='sequential',form='unformatted',status='old')
open(OUNIT,file='fvcore_internal_restart_out',access='sequential',form='unformatted')
! Headers
print*, ' '
print*, '-----------------------------'
print*, ' '
read (IUNIT, IOSTAT=status) header
write(OUNIT) header
print*, header
print*, ' '
print*, '-----------------------------'
print*, ' '
read (IUNIT, IOSTAT=status) header(1:5)
print*, header(1:5)
header(1) = npx_out
header(2) = npy_out*6
write(OUNIT) header(1:5)
print*, header(1:5)
! AK and BK
allocate( ak(npz+1) )
allocate( bk(npz+1) )
read (IUNIT, IOSTAT=status) ak
read (IUNIT, IOSTAT=status) bk
write(OUNIT) ak
write(OUNIT) bk
deallocate( ak )
deallocate( bk )
! U and V
#define FLOW
#if defined(FLOW)
print*, 'U and V'
call read_interp_write_flow(IUNIT, OUNIT, npx_in, npy_in, npx_out, npy_out, npz, ntiles, &
index_c2c, weight_c2c, corner_in, corner_out)
#else
! U
print*, 'U'
call read_interp_write(IUNIT, OUNIT, npx_in, npy_in, npx_out, npy_out, npz, ntiles, &
index_c2c, weight_c2c)
! V
print*, 'V'
call read_interp_write(IUNIT, OUNIT, npx_in, npy_in, npx_out, npy_out, npz, ntiles, &
index_c2c, weight_c2c)
#endif
! PT
print*, 'PT'
call read_interp_write(IUNIT, OUNIT, npx_in, npy_in, npx_out, npy_out, npz, ntiles, &
index_c2c, weight_c2c)
! PE
print*, 'PE'
call read_interp_write(IUNIT, OUNIT, npx_in, npy_in, npx_out, npy_out, npz+1, ntiles, &
index_c2c, weight_c2c)
! PKZ
print*, 'PKZ'
call read_interp_write(IUNIT, OUNIT, npx_in, npy_in, npx_out, npy_out, npz, ntiles, &
index_c2c, weight_c2c)
close(IUNIT)
close(OUNIT)
deallocate(corner_in, corner_out, index_c2c, weight_c2c)
else ! LAT-LON to Cube
!#define GRADS_READABLE
#ifndef GRADS_READABLE
! Start up FMS/MPP
call fms_init()
ntiles = 6
npx = npx_out+1
npy = npy_out+1
call fv_init(Atm, 1800.d0)
#endif
! Init latlon grid
allocate( grid_in(npx_in,npy_in,ndims,1) )
dlon=(pi+pi)/real(npx_in)
dlat=pi/real(npy_in)
do j=1,npy_in
do i=1,npx_in
grid_in(i,j,1,1) = real(i)*dlon
grid_in(i,j,2,1) = -0.5*pi + (real(j)-1.)*dlat
enddo
enddo
! Open Files
print*, ' Open Files '
open(IUNIT,file='fvcore_internal_restart_in' ,access='sequential',form='unformatted',status='old')
open(OUNIT,file='fvcore_internal_restart_out',access='sequential',form='unformatted')
#ifdef GRADS_READABLE
read (IUNIT, IOSTAT=status) header
print*, header
read (IUNIT, IOSTAT=status) header(1:5)
print*, header(1:5)
! AK and BK
allocate( ak(npz+1) )
allocate( bk(npz+1) )
read (IUNIT, IOSTAT=status) ak
read (IUNIT, IOSTAT=status) bk
do k=1,npz+1
print*, ak(k), bk(k)
enddo
deallocate( ak )
deallocate( bk )
allocate ( r8latlon(npx_in,npy_in) )
allocate ( r4latlon(npx_in,npy_in) )
do i=1,5
if (i==4) then
npz = 73
else
npz=72
endif
do k=1,npz
read (IUNIT, IOSTAT=status) r8latlon
if (i==1) r8latlon(:,1) = r8latlon(:,2)*0.25
! Regrid from -180:180 to 0:360
r4latlon(1 :npx_in/2,:) = r8latlon(npx_in/2 + 1 :npx_in , :)
r4latlon(npx_in/2 + 1:npx_in ,:) = r8latlon(1 :npx_in/2, :)
write(OUNIT) r4latlon
enddo
enddo
deallocate( r8latlon )
deallocate( r4latlon )
#else
! Headers
if (gid==masterproc) print*, ' '
if (gid==masterproc) print*, '-----------------------------'
if (gid==masterproc) print*, ' '
read (IUNIT, IOSTAT=status) header
if (gid==masterproc) print*, header
if (gid==masterproc) write(OUNIT) header
if (gid==masterproc) print*, header
if (gid==masterproc) print*, ' '
if (gid==masterproc) print*, '-----------------------------'
if (gid==masterproc) print*, ' '
read (IUNIT, IOSTAT=status) header(1:5)
if (gid==masterproc) print*, header(1:5)
header(1) = npx_out
header(2) = npy_out*6
if (gid==masterproc) write(OUNIT) header(1:5)
if (gid==masterproc) print*, header(1:5)
! AK and BK
allocate( ak(npz+1) )
allocate( bk(npz+1) )
read (IUNIT, IOSTAT=status) ak
read (IUNIT, IOSTAT=status) bk
if (gid==masterproc) print*, ' '
if (gid==masterproc) print*, '-----------------------------'
if (gid==masterproc) print*, ' '
if (gid==masterproc) then
do k=1,npz+1
print*, ak(k), bk(k)
enddo
endif
if (gid==masterproc) print*, ' '
if (gid==masterproc) print*, '-----------------------------'
if (gid==masterproc) print*, ' '
if (gid==masterproc) write(OUNIT) ak
if (gid==masterproc) write(OUNIT) bk
deallocate( ak )
deallocate( bk )
! Read and regrid
allocate ( r8latlon(npx_in,npy_in) )
allocate ( r4latlon(npx_in,npy_in) )
allocate ( r8tmp(Atm(1)%isd:Atm(1)%ied,Atm(1)%jsd:Atm(1)%jed) )
allocate ( r8_global(npx_out,npy_out,ntiles) )
allocate ( varo(npx_out,npy_out*ntiles) )
! State Vars
! Need to do U/V and move to cubed-sphere orientation
allocate ( ua(Atm(1)%isd:Atm(1)%ied ,Atm(1)%jsd:Atm(1)%jed ,npz) )
allocate ( va(Atm(1)%isd:Atm(1)%ied ,Atm(1)%jsd:Atm(1)%jed ,npz) )
allocate ( ud(Atm(1)%isd:Atm(1)%ied ,Atm(1)%jsd:Atm(1)%jed+1,npz) )
allocate ( vd(Atm(1)%isd:Atm(1)%ied+1,Atm(1)%jsd:Atm(1)%jed ,npz) )
do i=1,2
do k=1,npz
if (gid==masterproc) print*, 'Working on ', i, ' of 5, Level=',k
read (IUNIT, IOSTAT=status) r8latlon
! If U-Wind treat the Southern Pole as a reduced magnitude copy of next latitude
if (i==1) r8latlon(:,1) = r8latlon(:,2)*0.25
! Regrid from -180:180 to 0:360
r4latlon(1 :npx_in/2,:) = r8latlon(npx_in/2 + 1 :npx_in , :)
r4latlon(npx_in/2 + 1:npx_in ,:) = r8latlon(1 :npx_in/2, :)
call map_to_cubed_simple(npx_in, npy_in, grid_in(1,:,2,1), grid_in(:,1,1,1), r4latlon, grid, agrid, r8tmp, npx_out, npy_out)
if (i==1) ua(:,:,k) = r8tmp
if (i==2) va(:,:,k) = r8tmp
enddo
enddo
! Re-orient a2d3d lat-lon to cubed orientation and write
call cubed_a2d(npx, npy, npz, ua, va, ud, vd )
do i=1,2
do k=1,npz
if (i==1) then
r8_global(Atm(1)%isc:Atm(1)%iec,Atm(1)%jsc:Atm(1)%jec,tile) = &
ud(Atm(1)%isc:Atm(1)%iec,Atm(1)%jsc:Atm(1)%jec,k)
else
r8_global(Atm(1)%isc:Atm(1)%iec,Atm(1)%jsc:Atm(1)%jec,tile) = &
vd(Atm(1)%isc:Atm(1)%iec,Atm(1)%jsc:Atm(1)%jec,k)
endif
call mp_gather(r8_global, Atm(1)%isc, Atm(1)%iec, Atm(1)%jsc, Atm(1)%jec, npx_out, npy_out, ntiles)
write(myName, "(i1.1,'x',i2.2,'_Var')") i,k
call Write_Profile(r8_global, npx_out, npy_out, ntiles, myName)
do l=1,6
j1 = (npy_out)*(l-1) + 1
j2 = (npy_out)*(l-1) + npy_out
varo(:,j1:j2)=r8_global(:,:,l)
enddo
if (gid==masterproc) write(OUNIT) varo
enddo
enddo
deallocate( ua )
deallocate( va )
deallocate( ud )
deallocate( vd )
do i=3,5
if (i==4) then
npz = 73
else
npz=72
endif
do k=1,npz
if (gid==masterproc) print*, 'Working on ', i, ' of 5, Level=',k
read (IUNIT, IOSTAT=status) r8latlon
! If U-Wind treat the Southern Pole as a reduced magnitude copy of next latitude
if (i==1) r8latlon(:,1) = r8latlon(:,2)*0.25
! Regrid from -180:180 to 0:360
r4latlon(1 :npx_in/2,:) = r8latlon(npx_in/2 + 1 :npx_in , :)
r4latlon(npx_in/2 + 1:npx_in ,:) = r8latlon(1 :npx_in/2, :)
call map_to_cubed_simple(npx_in, npy_in, grid_in(1,:,2,1), grid_in(:,1,1,1), r4latlon, grid, agrid, r8tmp, npx_out, npy_out)
r8_global(Atm(1)%isc:Atm(1)%iec,Atm(1)%jsc:Atm(1)%jec,tile) = &
r8tmp(Atm(1)%isc:Atm(1)%iec,Atm(1)%jsc:Atm(1)%jec)
call mp_gather(r8_global, Atm(1)%isc, Atm(1)%iec, Atm(1)%jsc, Atm(1)%jec, npx_out, npy_out, ntiles)
write(myName, "(i1.1,'x',i2.2,'_Var')") i,k
call Write_Profile(r8_global, npx_out, npy_out, ntiles, myName)
do l=1,6
j1 = (npy_out)*(l-1) + 1
j2 = (npy_out)*(l-1) + npy_out
varo(:,j1:j2)=r8_global(:,:,l)
enddo
if (gid==masterproc) write(OUNIT) varo
enddo
enddo
deallocate ( r8latlon )
deallocate ( r4latlon )
deallocate ( r8tmp )
deallocate ( r8_global )
deallocate ( varo )
#endif
close(IUNIT)
close(OUNIT)
call fms_end()
endif
contains
subroutine read_interp_write(IUNIT, OUNIT, npx_in, npy_in, npx_out, npy_out, npz, ntiles, &
index_c2c, weight_c2c)
integer, intent(IN) :: IUNIT, OUNIT, npx_in, npy_in, npx_out, npy_out, npz, ntiles
integer , intent(IN) :: index_c2c(3, npx_out, npy_out, ntiles)
real(ESMF_KIND_R8), intent(IN) :: weight_c2c(4, npx_out, npy_out, ntiles)
real(ESMF_KIND_R8), allocatable :: vari(:,:)
real(ESMF_KIND_R8), allocatable :: varo(:,:)
real(ESMF_KIND_R8), allocatable :: var_in(:,:,:,:)
real(ESMF_KIND_R8), allocatable :: var_out(:,:,:,:)
integer :: i,j,l,k,j1,j2,status
allocate( vari(npx_in,npy_in*ntiles) )
allocate( varo(npx_out,npy_out*ntiles) )
allocate( var_in(0:npx_in+1,0:npy_in+1,npz,ntiles) )
allocate( var_out(npx_out,npy_out,npz,ntiles) )
!
do k=1,npz
read (IUNIT, IOSTAT=status) vari
do l=1,ntiles
j1 = (npy_in)*(l-1) + 1
j2 = (npy_in)*(l-1) + npx_in
var_in(1:npx_in,1:npy_in,k,l)=vari(:,j1:j2)
enddo
!if (k==1) then
! print*, vari(:,1)
!endif
enddo
do l=1,ntiles
call ghost_cubsph_update(var_in, 0, npx_in+1, 0, npy_in+1, npz, 1, ntiles, &
1, npz, l, A_grid)
enddo
call do_c2c_interpolation(var_in, 0, npx_in+1, 0, npy_in+1, npz, ntiles, &
index_c2c, weight_c2c, npx_out, npy_out, var_out)
do k=1,npz
do l=1,ntiles
j1 = (npy_out)*(l-1) + 1
j2 = (npy_out)*(l-1) + npy_out
varo(:,j1:j2)=var_out(:,:,k,l)
enddo
write(OUNIT) varo
!if (k==1) then
! print*, '--------------'
! print*, varo(:,1)
!endif
!stop
enddo
deallocate ( vari, varo, var_in, var_out )
end subroutine read_interp_write
subroutine read_interp_write_flow(IUNIT, OUNIT, npx_in, npy_in, npx_out, npy_out, npz, ntiles, &
index_c2c, weight_c2c, corner_in, corner_out)
use GRID_UTILS_mod, only: latlon2xyz
use GRID_UTILS_mod, only: get_dx, get_dxa, get_dy, get_dya, &
get_center_vect, get_west_vect, &
get_south_vect, get_cosa_center
use FLOW_PROJ_mod, only: d2a_vect, a2d_vect
integer, intent(IN) :: IUNIT, OUNIT, npx_in, npy_in, npx_out, npy_out, npz, ntiles
integer , intent(IN) :: index_c2c(3, npx_out, npy_out, ntiles)
real(ESMF_KIND_R8), intent(IN) :: weight_c2c(4, npx_out, npy_out, ntiles)
real(ESMF_KIND_R8), intent(IN) :: corner_in(2,0:npx_in+2,0:npy_in+2,ntiles)
real(ESMF_KIND_R8), intent(IN) :: corner_out(2,0:npx_out+2,0:npy_out+2,ntiles)
logical :: west_edge = .true., east_edge = .true., &
south_edge = .true., north_edge = .true.
logical :: sw_corner = .true., se_corner = .true., &
nw_corner = .true., ne_corner = .true.
logical :: edge_interp = .false.
real(ESMF_KIND_R8), dimension(:,:,:,:), allocatable :: xyz_corner_in, xyz_corner_out
real(ESMF_KIND_R8), allocatable :: vari(:,:)
real(ESMF_KIND_R8), allocatable :: varo(:,:)
real(ESMF_KIND_R8), allocatable :: u_in(:,:,:,:)
real(ESMF_KIND_R8), allocatable :: u_out(:,:,:,:)
real(ESMF_KIND_R8), allocatable :: v_in(:,:,:,:)
real(ESMF_KIND_R8), allocatable :: v_out(:,:,:,:)
integer :: i,j,l,k,n,j1,j2,itile,status
integer :: nx_in, ny_in, nx_out, ny_out, nz
real(ESMF_KIND_R8), dimension(:,:,:,:,:), allocatable :: vxyz_in, vxyz_out
real(ESMF_KIND_R8), dimension(:,:,:), allocatable :: u, v ,ec1, ec2, ew1, ew2, es1, es2
real(ESMF_KIND_R8), dimension(:,:), allocatable :: dx, dy, dxa, dya, rdxa, rdya, cosa_s, sina_s
real(ESMF_KIND_R8), dimension(:), allocatable :: edge_vect_w, edge_vect_e, edge_vect_s, edge_vect_n
nx_in = npx_in+1
ny_in = npy_in+1
nx_out = npx_out+1
ny_out = npy_out+1
!------------------------------------------------------------------!
! calculate xyz cell corners and cell centers !
!------------------------------------------------------------------!
allocate(xyz_corner_in (3, 0:nx_in+1, 0:ny_in+1, ntiles), &
xyz_corner_out(3, 0:nx_out+1, 0:ny_out+1, ntiles))
do l=1,ntiles
do j=0,ny_in+1
do i=0,nx_in+1
call latlon2xyz(corner_in(:,i,j,l), xyz_corner_in(:,i,j,l))
enddo
enddo
enddo
do l=1,ntiles
do j=0,ny_out+1
do i=0,nx_out+1
call latlon2xyz(corner_out(:,i,j,l), xyz_corner_out(:,i,j,l))
enddo
enddo
enddo
allocate( vari(npx_in,npy_in*ntiles) )
allocate( varo(npx_out,npy_out*ntiles) )
allocate( u_in(npx_in,npy_in,npz,ntiles) )
allocate( v_in(npx_in,npy_in,npz,ntiles) )
allocate( u_out(npx_out,npy_out,npz,ntiles) )
allocate( v_out(npx_out,npy_out,npz,ntiles) )
! Read U
do k=1,npz
read (IUNIT, IOSTAT=status) vari
do l=1,ntiles
j1 = (npy_in)*(l-1) + 1
j2 = (npy_in)*(l-1) + npx_in
u_in(1:npx_in,1:npy_in,k,l)=vari(:,j1:j2)
enddo
enddo
! Read U
do k=1,npz
read (IUNIT, IOSTAT=status) vari
do l=1,ntiles
j1 = (npy_in)*(l-1) + 1
j2 = (npy_in)*(l-1) + npx_in
v_in(1:npx_in,1:npy_in,k,l)=vari(:,j1:j2)
enddo
enddo
! Flow interpolation for U and V components
do k=1,npz
nz=1
!----------------------------------------------------------!
! horizontal flow !
!----------------------------------------------------------!
allocate(u(0:nx_in,0:ny_in+1,nz), v(0:nx_in+1,0:ny_in,nz), &
vxyz_in(3,0:nx_in,0:ny_in,nz,ntiles))
allocate(dx(0:nx_in,0:ny_in+1), dxa(0:nx_in,0:ny_in), rdxa(0:nx_in,0:ny_in))
allocate(dy(0:nx_in+1,0:ny_in), dya(0:nx_in,0:ny_in), rdya(0:nx_in,0:ny_in))
allocate(ec1(3,0:nx_in,0:ny_in), ec2(3,0:nx_in,0:ny_in))
allocate(cosa_s(0:nx_in,0:ny_in), sina_s(0:nx_in,0:ny_in))
!----------------------------------------------------------!
! loop over tiles !
!----------------------------------------------------------!
do itile=1,ntiles
!-------------------------------------------------------!
! read horizontal flow !
!-------------------------------------------------------!
u(1:nx_in-1,1:ny_in-1,1:)=u_in(1:nx_in-1,1:ny_in-1,k:k,itile)
v(1:nx_in-1,1:ny_in-1,1:)=v_in(1:nx_in-1,1:ny_in-1,k:k,itile)
!-------------------------------------------------------!
! fill shared edges on D-Grid !
!-------------------------------------------------------!
if (itile==1) u(1:nx_in-1,ny_in,1:) = -REVERSE( v_in(1 ,1:ny_in-1,k:k,3) )
if (itile==2) u(1:nx_in-1,ny_in,1:) = ( u_in(1:nx_in-1,1 ,k:k,3) )
if (itile==3) u(1:nx_in-1,ny_in,1:) = -REVERSE( v_in(1 ,1:ny_in-1,k:k,5) )
if (itile==4) u(1:nx_in-1,ny_in,1:) = ( u_in(1:nx_in-1,1 ,k:k,5) )
if (itile==5) u(1:nx_in-1,ny_in,1:) = -REVERSE( v_in(1 ,1:ny_in-1,k:k,1) )
if (itile==6) u(1:nx_in-1,ny_in,1:) = ( u_in(1:nx_in-1,1 ,k:k,1) )
if (itile==1) v(nx_in,1:ny_in-1,1:) = ( v_in(1 ,1:ny_in-1,k:k,2) )
if (itile==2) v(nx_in,1:ny_in-1,1:) = -REVERSE( u_in(1:nx_in-1,1 ,k:k,4) )
if (itile==3) v(nx_in,1:ny_in-1,1:) = ( v_in(1 ,1:ny_in-1,k:k,4) )
if (itile==4) v(nx_in,1:ny_in-1,1:) = -REVERSE( u_in(1:nx_in-1,1 ,k:k,6) )
if (itile==5) v(nx_in,1:ny_in-1,1:) = ( v_in(1 ,1:ny_in-1,k:k,6) )
if (itile==6) v(nx_in,1:ny_in-1,1:) = -REVERSE( u_in(1:nx_in-1,1 ,k:k,2) )
!-------------------------------------------------------!
! geometrical properties of input grid !
!-------------------------------------------------------!
call get_dx (xyz_corner_in(:,:,:,itile), 0, nx_in, 0, ny_in, &
0, nx_in, 0, ny_in, dx)
call get_dxa(xyz_corner_in(:,:,:,itile), 0, nx_in, 0, ny_in, &
0, nx_in, 0, ny_in, dxa, rdxa=rdxa)
call get_dy (xyz_corner_in(:,:,:,itile), 0, nx_in, 0, ny_in, &
0, nx_in, 0, ny_in, dy)
call get_dya(xyz_corner_in(:,:,:,itile), 0, nx_in, 0, ny_in, &
0, nx_in, 0, ny_in, dya, rdya=rdya)
call get_center_vect(xyz_corner_in(:,:,:,itile), 0, nx_in, 0, ny_in, &
0, nx_in, 0, ny_in, ec1, ec2)
call get_cosa_center(ec1, ec2, 0, nx_in, 0, ny_in, &
0, nx_in, 0, ny_in, cosa_s, sina_s)
!-------------------------------------------------------!
! calculate flow vector for a-grid !
!-------------------------------------------------------!
call d2a_vect(u, v, dx, dy, rdxa, rdya, cosa_s, ec1, ec2, &
0, nx_in , 0, ny_in , 1, nz, &
1, nx_in-1, 1, ny_in-1, 1, nz, &
vxyz_in(:,:,:,:,itile))
enddo
deallocate(u, v, dx, dy, dxa, dya, rdxa, rdya, ec1, ec2, cosa_s, sina_s)
allocate(vxyz_out(3,0:nx_out,0:ny_out,nz,ntiles))
!----------------------------------------------------------!
! ghost cell update of vxyz_in !
!----------------------------------------------------------!
vxyz_in(:,0, 0, :,:)=0.
vxyz_in(:,nx_in,0 ,:,:)=0.
vxyz_in(:,nx_in,ny_in,:,:)=0.
vxyz_in(:,0, ny_in,:,:)=0.
do n=1,3
do itile=1,ntiles
call ghost_cubsph_update(vxyz_in(n,:,:,:,:), 0, nx_in, 0, ny_in, nz, 1, ntiles, &
1, nz, itile, A_grid)
enddo
enddo
!----------------------------------------------------------!
! do interpolation of flow vector !
!----------------------------------------------------------!
do n=1,3
call do_c2c_interpolation(vxyz_in(n,:,:,:,:), 0, nx_in, 0, ny_in, nz, ntiles, &
index_c2c, weight_c2c, nx_out-1, ny_out-1, &
vxyz_out(n,1:nx_out-1,1:ny_out-1,:,:))
enddo
deallocate(vxyz_in)
!----------------------------------------------------------!
! loop over tiles !
!----------------------------------------------------------!
allocate(u(0:nx_out,0:ny_out+1,nz), v(0:nx_out+1,0:ny_out,nz))
allocate(ew1(3,0:nx_out,0:ny_out+1), ew2(3,0:nx_out,0:ny_out+1))
allocate(es1(3,0:nx_out+1,0:ny_out), es2(3,0:nx_out+1,0:ny_out))
allocate(edge_vect_w(0:ny_out), edge_vect_e(0:ny_out), &
edge_vect_s(0:nx_out), edge_vect_n(0:nx_out))
do itile=1,ntiles
!-------------------------------------------------------!
! ghost cell update of vxyz_out !
!-------------------------------------------------------!
do n=1,3
call ghost_cubsph_update(vxyz_out(n,:,:,:,:), 0, nx_out, 0, ny_out, nz, 1, ntiles, &
1, nz, itile, A_grid)
enddo
!-------------------------------------------------------!
! geometrical properties of output grid !
!-------------------------------------------------------!
call get_west_vect(xyz_corner_out(:,:,:,itile), &
0, nx_out, 0, ny_out, 1, nx_out-1, 1, ny_out-1, &
west_edge, east_edge, 1, nx_out-1, ew1, ew2)
call get_south_vect(xyz_corner_out(:,:,:,itile), &
0, nx_out, 0, ny_out, 1, nx_out-1, 1, ny_out-1, &
west_edge, east_edge, 1, ny_out-1, es1, es2)
!-------------------------------------------------------!
! calculate co-variant flow components on d_grid !
!-------------------------------------------------------!
call a2d_vect(vxyz_out(:,:,:,:,itile), ew1, ew2, es1, es2, &
0, nx_out, 0, ny_out, 1, nz, &
1, nx_out-1, 1, ny_out-1, 1, nz, &
edge_interp, edge_vect_w, edge_vect_e, edge_vect_s, edge_vect_n, &
west_edge, east_edge, south_edge, north_edge, &
sw_corner, se_corner, nw_corner, ne_corner, &
1, nx_out-1, 1, ny_out-1, u, v)
!-------------------------------------------------------!
! write flow components !
!-------------------------------------------------------!
u_out(1:nx_out-1, 1:ny_out-1, k:k,itile)=u(1:nx_out-1, 1:ny_out-1, 1:nz)
v_out(1:nx_out-1, 1:ny_out-1, k:k,itile)=v(1:nx_out-1, 1:ny_out-1, 1:nz)
enddo
deallocate(vxyz_out, u, v, ew1, ew2, es1, es2, &
edge_vect_w, edge_vect_e, edge_vect_s, edge_vect_n)
enddo ! npz
do k=1,npz
do l=1,ntiles
j1 = (npy_out)*(l-1) + 1
j2 = (npy_out)*(l-1) + npy_out
varo(:,j1:j2)=u_out(:,:,k,l)
enddo
write(OUNIT) varo
enddo
do k=1,npz
do l=1,ntiles
j1 = (npy_out)*(l-1) + 1
j2 = (npy_out)*(l-1) + npy_out
varo(:,j1:j2)=v_out(:,:,k,l)
enddo
write(OUNIT) varo
enddo
! print*, u_in(:,1,1,1)
! print*, '---'
! print*, u_out(:,1,1,1)
deallocate ( vari, varo, u_in, v_in, u_out, v_out )
deallocate ( xyz_corner_in, xyz_corner_out )
end subroutine read_interp_write_flow
Function REVERSE(A) Result(B)
real(ESMF_KIND_R8), Intent(In) :: A(:,:)
real(ESMF_KIND_R8) :: B(Size(A,1),Size(A,2))
Integer :: i, n
n = Size(A, 1)
Do i = 1, n
B(i,:) = A(1+n-i,:)
End Do
End Function REVERSE
Subroutine Write_Profile(arr_global, npx, npy, npz, name)
integer, intent(IN) :: npx, npy, npz
real(ESMF_KIND_R8), intent(IN) :: arr_global(npx,npy,npz)
character(len=*), intent(IN) :: name
integer :: k
real(ESMF_KIND_R8) :: rng(3,npz)
real(ESMF_KIND_R8) :: GSUM
IF (gid==masterproc) Then
rng(1,:) = MINVAL(MINVAL(arr_global,DIM=1),DIM=1)
rng(2,:) = MAXVAL(MAXVAL(arr_global,DIM=1),DIM=1)
rng(3,:) = SUM(SUM(arr_global,DIM=1),DIM=1)/(npx*npy)
GSUM = SUM(SUM(SUM(arr_global,DIM=1),DIM=1),DIM=1)
print*,'***********'
print*,'stats for ',trim(name)
Do k = 1, npz
Write(*,'(a,i4.0,3(f21.9,1x))')'k:',k,rng(:,k)
End Do
! Write(*,"('GlobalSum: ',f21.9)") GSUM
print*,'***********'
print*,' '
End IF
End Subroutine Write_Profile
end