forked from geoschem/FVdycoreCubed_GridComp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LatLon2Cube.F90
289 lines (242 loc) · 9.12 KB
/
LatLon2Cube.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
subroutine latlon2cube(npx, npy, nlon, nlat, data_ll, data_cs)
use ESMF
use MAPL, only : MAPL_UNDEF
use MAPL_IOMod, only : GETFILEUNIT, FREE_FILE
use MAPL_ConstantsMod, only : pi=> MAPL_PI_R8
use fv_grid_utils_mod, only : gnomonic_grids, cell_center2
use fv_grid_tools_mod, only : mirror_grid
use fv_arrays_mod, only : REAL4, REAL8, R_GRID
implicit none
integer, intent(in) :: npx, npy, nlon, nlat
real, dimension(npx , npy ), intent(out) :: data_cs
real, dimension(nlon, nlat), intent(in ) :: data_ll
integer :: ntiles=6
integer :: npts
integer :: ndims=2
real(R_GRID), allocatable :: grid_global(:,:,:,:)
real(R_GRID), allocatable :: agrid(:,:,:)
real(R_GRID), allocatable :: xlon(:), ylat(:)
real, dimension(nlon, nlat) :: dll_flipped
integer :: l2c_unit
character(len=ESMF_MAXSTR) :: l2c_fname
logical :: l2c_file_exists
real(ESMF_KIND_R4), allocatable :: l2c(:,:,:)
integer , allocatable :: id1(:,:), id2(:,:), jdc(:,:)
logical, save :: do_init=.true.
real(R_GRID) :: dlon, dlat
logical :: found
integer :: grid_type = 0
integer :: i,j,n,l,itile, i1,i2, j1,j2
npts = npx+1
if (do_init) then
write(l2c_fname,'(i5.5,"x",i5.5,"_l2c_",i5.5,"x",i5.5,".bin")') nlon, nlat, npx,npy
inquire(FILE=TRIM(l2c_fname), EXIST=l2c_file_exists)
if (.not. l2c_file_exists) then
print*, 'Computing weights for ', TRIM(l2c_fname)
!--------------------------------------------------------------------!
! initialize cubed sphere grid !
!--------------------------------------------------------------------!
allocate( grid_global(npts,npts,ndims,ntiles) )
call gnomonic_grids(grid_type, npts-1, grid_global(:,:,1,1), grid_global(:,:,2,1))
call mirror_grid(grid_global, 0, npts, npts, 2, 6)
do n=1,ntiles
do j=1,npts
do i=1,npts
!---------------------------------
! Shift the corner away from Japan
!---------------------------------
! This will result in the corner close to east coast of China
grid_global(i,j,1,n) = grid_global(i,j,1,n) - pi/18.
if ( grid_global(i,j,1,n) < 0. ) &
grid_global(i,j,1,n) = grid_global(i,j,1,n) + 2.*pi
if (ABS(grid_global(i,j,1,1)) < 1.e-10) grid_global(i,j,1,1) = 0.0
if (ABS(grid_global(i,j,2,1)) < 1.e-10) grid_global(i,j,2,1) = 0.0
enddo
enddo
enddo
!---------------------------------
! Clean Up Corners
!---------------------------------
grid_global( 1,1:npts,:,2)=grid_global(npts,1:npts,:,1)
grid_global( 1,1:npts,:,3)=grid_global(npts:1:-1,npts,:,1)
grid_global(1:npts,npts,:,5)=grid_global(1,npts:1:-1,:,1)
grid_global(1:npts,npts,:,6)=grid_global(1:npts,1,:,1)
grid_global(1:npts, 1,:,3)=grid_global(1:npts,npts,:,2)
grid_global(1:npts, 1,:,4)=grid_global(npts,npts:1:-1,:,2)
grid_global(npts,1:npts,:,6)=grid_global(npts:1:-1,1,:,2)
grid_global( 1,1:npts,:,4)=grid_global(npts,1:npts,:,3)
grid_global( 1,1:npts,:,5)=grid_global(npts:1:-1,npts,:,3)
grid_global(npts,1:npts,:,3)=grid_global(1,1:npts,:,4)
grid_global(1:npts, 1,:,5)=grid_global(1:npts,npts,:,4)
grid_global(1:npts, 1,:,6)=grid_global(npts,npts:1:-1,:,4)
grid_global( 1,1:npts,:,6)=grid_global(npts,1:npts,:,5)
!------------------------------------------------------------------!
! define the agrid at cell centers 0:360 -90:90 !
!------------------------------------------------------------------!
allocate( agrid(npx,npy,ndims) )
agrid(:,:,:) = -1.e25
do n=1,ntiles
do j=1,npts-1
j1 = (npts-1)*(n-1) + j
do i=1,npts-1
call cell_center2(grid_global(i,j, 1:2,n), grid_global(i+1,j, 1:2,n), &
grid_global(i,j+1,1:2,n), grid_global(i+1,j+1,1:2,n), &
agrid(i,j1,1:2) )
agrid(i,j1,1) = agrid(i,j1,1)
enddo
enddo
enddo
deallocate ( grid_global )
!------------------------------------------------------------------!
! initialize latlon grid !
!------------------------------------------------------------------!
allocate(xlon(nlon), ylat(nlat))
!------------------------------------------------------------------!
! LatLon locations should be 0:360 -90:90 !
!------------------------------------------------------------------!
dlon=(pi+pi)/real(nlon)
dlat=pi/real(nlat-1)
do i=1,nlon
xlon(i)=(real(i)-1)*dlon
enddo
ylat(1) =-0.5*pi
ylat(nlat)= 0.5*pi
do j=2,nlat-1
ylat(j)=ylat(1)+(real(j)-1.)*dlat
enddo
!--------------------------------------------------------------------!
! allocate storage for l2c weights !
!--------------------------------------------------------------------!
allocate( l2c(npx, npy, 4) )
allocate( id1(npx, npy) )
allocate( id2(npx, npy) )
allocate( jdc(npx, npy) )
!--------------------------------------------------------------------!
! calculate weights for cubed sphere to latlon grid interpolation !
!--------------------------------------------------------------------!
call remap_coef( npx, npy, nlon, nlat, agrid, xlon, ylat, id1, id2, jdc, l2c )
deallocate ( agrid )
deallocate ( xlon )
deallocate ( ylat )
!do_init = .false.
l2c_unit = GETFILEUNIT(TRIM(l2c_fname))
OPEN (UNIT=l2c_unit,FILE=TRIM(l2c_fname), FORM='unformatted')
WRITE(UNIT=l2c_unit) l2c
WRITE(UNIT=l2c_unit) id1
WRITE(UNIT=l2c_unit) id2
WRITE(UNIT=l2c_unit) jdc
CLOSE(UNIT=l2c_unit)
call FREE_FILE(l2c_unit)
print*, 'Wrote weights for ', TRIM(l2c_fname)
else
!--------------------------------------------------------------------!
! allocate storage for l2c weights & read them in !
!--------------------------------------------------------------------!
allocate( l2c(npx, npy, 4) )
allocate( id1(npx, npy) )
allocate( id2(npx, npy) )
allocate( jdc(npx, npy) )
l2c_unit = GETFILEUNIT(TRIM(l2c_fname))
!print*, 'Reading weights from ', TRIM(l2c_fname)
OPEN (UNIT=l2c_unit, FILE=TRIM(l2c_fname), FORM='unformatted', STATUS='OLD')
READ (UNIT=l2c_unit) l2c
READ (UNIT=l2c_unit) id1
READ (UNIT=l2c_unit) id2
READ (UNIT=l2c_unit) jdc
CLOSE(UNIT=l2c_unit)
call FREE_FILE(l2c_unit)
!do_init = .false.
endif
endif ! do_init
! Latlon data needs to flip East/West hemispheres
do j=1,nlat
do i=1,nlon/2
dll_flipped(i,j) = data_ll((nlon/2)+i,j)
dll_flipped((nlon/2)+i,j) = data_ll(i,j)
enddo
enddo
!--------------------------------------------------------------------!
! perform interpolation !
!--------------------------------------------------------------------!
do j=1,npy
do i=1,npx
i1 = id1(i,j)
i2 = id2(i,j)
j1 = jdc(i,j)
data_cs(i,j) = l2c(i,j,1)*dll_flipped(i1,j1 ) + l2c(i,j,2)*dll_flipped(i2,j1 ) + &
l2c(i,j,3)*dll_flipped(i2,j1+1) + l2c(i,j,4)*dll_flipped(i1,j1+1)
enddo
enddo
deallocate( l2c )
deallocate( id1 )
deallocate( id2 )
deallocate( jdc )
contains
subroutine remap_coef( npx, npy, im, jm, agrid, lon, lat, id1, id2, jdc, l2c )
integer, intent(in):: npx, npy
integer, intent(in):: im, jm
real(R_GRID), intent(in):: agrid(npx,npy,2)
real(R_GRID), intent(in):: lon(im), lat(jm)
real(ESMF_KIND_R4), intent(out):: l2c(npx,npy,4)
integer, intent(out), dimension(npx,npy):: id1, id2, jdc
! local:
real(R_GRID) :: rdlon(im)
real(R_GRID) :: rdlat(jm)
real(R_GRID) :: a1, b1
integer i,j, i1, i2, jc, i0, j0
do i=1,im-1
rdlon(i) = 1. / (lon(i+1) - lon(i))
enddo
rdlon(im) = 1. / (lon(1) + 2.*pi - lon(im))
do j=1,jm-1
rdlat(j) = 1. / (lat(j+1) - lat(j))
enddo
i1 = -999
i2 = -999
jc = -999
! * Interpolate to cubed sphere cell center
do 5000 j=1,npy
do i=1,npx
if ( agrid(i,j,1)>lon(im) ) then
i1 = im; i2 = 1
a1 = (agrid(i,j,1)-lon(im)) * rdlon(im)
elseif ( agrid(i,j,1)<lon(1) ) then
i1 = im; i2 = 1
a1 = (agrid(i,j,1)+2.*pi-lon(im)) * rdlon(im)
else
do i0=1,im-1
if ( agrid(i,j,1)>=lon(i0) .and. agrid(i,j,1)<=lon(i0+1) ) then
i1 = i0; i2 = i0+1
a1 = (agrid(i,j,1)-lon(i1)) * rdlon(i0)
go to 111
endif
enddo
endif
111 continue
if ( agrid(i,j,2)<lat(1) ) then
jc = 1
b1 = 0.
elseif ( agrid(i,j,2)>lat(jm) ) then
jc = jm-1
b1 = 1.
else
do j0=1,jm-1
if ( agrid(i,j,2)>=lat(j0) .and. agrid(i,j,2)<=lat(j0+1) ) then
jc = j0
b1 = (agrid(i,j,2)-lat(jc)) * rdlat(jc)
go to 222
endif
enddo
endif
222 continue
l2c(i,j,1) = (1.-a1) * (1.-b1)
l2c(i,j,2) = a1 * (1.-b1)
l2c(i,j,3) = a1 * b1
l2c(i,j,4) = (1.-a1) * b1
id1(i,j) = i1
id2(i,j) = i2
jdc(i,j) = jc
enddo !i-loop
5000 continue !j-loop
end subroutine remap_coef
end subroutine latlon2cube