forked from RosettaCommons/RoseTTAFold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_pyrosetta_ver.sh
executable file
·123 lines (102 loc) · 4.07 KB
/
run_pyrosetta_ver.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/bin/bash
# make the script stop when error (non-true exit code) is occured
set -e
############################################################
# >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
__conda_setup="$('conda' 'shell.bash' 'hook' 2> /dev/null)"
eval "$__conda_setup"
unset __conda_setup
# <<< conda initialize <<<
############################################################
SCRIPT=`realpath -s $0`
export PIPEDIR=`dirname $SCRIPT`
CPU="8" # number of CPUs to use
MEM="64" # max memory (in GB)
# Inputs:
IN="$1" # input.fasta
WDIR=`realpath -s $2` # working folder
LEN=`tail -n1 $IN | wc -m`
mkdir -p $WDIR/log
conda activate RoseTTAFold
############################################################
# 1. generate MSAs
############################################################
if [ ! -s $WDIR/t000_.msa0.a3m ]
then
echo "Running HHblits"
$PIPEDIR/input_prep/make_msa.sh $IN $WDIR $CPU $MEM > $WDIR/log/make_msa.stdout 2> $WDIR/log/make_msa.stderr
fi
############################################################
# 2. predict secondary structure for HHsearch run
############################################################
if [ ! -s $WDIR/t000_.ss2 ]
then
echo "Running PSIPRED"
$PIPEDIR/input_prep/make_ss.sh $WDIR/t000_.msa0.a3m $WDIR/t000_.ss2 > $WDIR/log/make_ss.stdout 2> $WDIR/log/make_ss.stderr
fi
############################################################
# 3. search for templates
############################################################
DB="$PIPEDIR/pdb100_2021Mar03/pdb100_2021Mar03"
if [ ! -s $WDIR/t000_.hhr ]
then
echo "Running hhsearch"
HH="hhsearch -b 50 -B 500 -z 50 -Z 500 -mact 0.05 -cpu $CPU -maxmem $MEM -aliw 100000 -e 100 -p 5.0 -d $DB"
cat $WDIR/t000_.ss2 $WDIR/t000_.msa0.a3m > $WDIR/t000_.msa0.ss2.a3m
$HH -i $WDIR/t000_.msa0.ss2.a3m -o $WDIR/t000_.hhr -atab $WDIR/t000_.atab -v 0 > $WDIR/log/hhsearch.stdout 2> $WDIR/log/hhsearch.stderr
fi
############################################################
# 4. predict distances and orientations
############################################################
if [ ! -s $WDIR/t000_.3track.npz ]
then
echo "Predicting distance and orientations"
python $PIPEDIR/network/predict_pyRosetta.py \
-m $PIPEDIR/weights \
-i $WDIR/t000_.msa0.a3m \
-o $WDIR/t000_.3track \
--hhr $WDIR/t000_.hhr \
--atab $WDIR/t000_.atab \
--db $DB 1> $WDIR/log/network.stdout 2> $WDIR/log/network.stderr
fi
############################################################
# 5. perform modeling
############################################################
mkdir -p $WDIR/pdb-3track
conda deactivate
conda activate folding
for m in 0 1 2
do
for p in 0.05 0.15 0.25 0.35 0.45
do
for ((i=0;i<1;i++))
do
if [ ! -f $WDIR/pdb-3track/model${i}_${m}_${p}.pdb ]; then
echo "python -u $PIPEDIR/folding/RosettaTR.py --roll -r 3 -pd $p -m $m -sg 7,3 $WDIR/t000_.3track.npz $IN $WDIR/pdb-3track/model${i}_${m}_${p}.pdb"
fi
done
done
done > $WDIR/parallel.fold.list
N=`cat $WDIR/parallel.fold.list | wc -l`
if [ "$N" -gt "0" ]; then
echo "Running parallel RosettaTR.py"
parallel -j $CPU < $WDIR/parallel.fold.list > $WDIR/log/folding.stdout 2> $WDIR/log/folding.stderr
fi
############################################################
# 6. Pick final models
############################################################
count=$(find $WDIR/pdb-3track -maxdepth 1 -name '*.npz' | grep -v 'features' | wc -l)
if [ "$count" -lt "15" ]; then
# run DeepAccNet-msa
echo "Running DeepAccNet-msa"
python $PIPEDIR/DAN-msa/ErrorPredictorMSA.py --roll -p $CPU $WDIR/t000_.3track.npz $WDIR/pdb-3track $WDIR/pdb-3track 1> $WDIR/log/DAN_msa.stdout 2> $WDIR/log/DAN_msa.stderr
fi
if [ ! -s $WDIR/model/model_5.crderr.pdb ]
then
echo "Picking final models"
python -u -W ignore $PIPEDIR/DAN-msa/pick_final_models.div.py \
$WDIR/pdb-3track $WDIR/model $CPU > $WDIR/log/pick.stdout 2> $WDIR/log/pick.stderr
echo "Final models saved in: $2/model"
fi
echo "Done"