forked from gzr2017/ImageProcessing100Wen
-
Notifications
You must be signed in to change notification settings - Fork 1
/
answer_32.cpp
109 lines (88 loc) · 2.53 KB
/
answer_32.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <math.h>
#include <complex>
const int height = 128, width = 128;
struct fourier_str {
std::complex<double> coef[height][width];
};
// RGB to Gray scale
cv::Mat BGR2GRAY(cv::Mat img){
// prepare output
cv::Mat out = cv::Mat::zeros(height, width, CV_8UC1);
// BGR -> Gray
for (int y = 0; y < height; y++){
for (int x = 0; x < width; x++){
out.at<uchar>(y, x) = (int)((float)img.at<cv::Vec3b>(y, x)[0] * 0.0722 + \
(float)img.at<cv::Vec3b>(y, x)[1] * 0.7152 + \
(float)img.at<cv::Vec3b>(y, x)[2] * 0.2126);
}
}
return out;
}
// Discrete Fourier transformation
fourier_str dft(cv::Mat img, fourier_str fourier_s){
double I;
double theta;
std::complex<double> val;
for (int l = 0; l < height; l ++){
for (int k = 0; k < width; k ++){
val.real(0);
val.imag(0);
for (int y = 0; y < height; y++){
for (int x = 0; x < width; x++){
I = (double)img.at<uchar>(y, x);
theta = -2 * M_PI * ((double)k * (double)x / (double)width + (double)l * (double)y / (double)height);
val += std::complex<double>(cos(theta), sin(theta)) * I;
}
}
val /= sqrt(height * width);
fourier_s.coef[l][k] = val;
}
}
return fourier_s;
}
// Inverse Discrete Fourier transformation
cv::Mat idft(cv::Mat out, fourier_str fourier_s){
double theta;
double g;
std::complex<double> G;
std::complex<double> val;
for ( int y = 0; y < height; y ++){
for ( int x = 0; x < width; x ++){
val.real(0);
val.imag(0);
for ( int l = 0; l < height; l ++){
for ( int k = 0; k < width; k ++){
G = fourier_s.coef[l][k];
theta = 2 * M_PI * ((double)k * (double)x / (double)width + (double)l * (double)y / (double)height);
val += std::complex<double>(cos(theta), sin(theta)) * G;
}
}
g = std::abs(val) / sqrt(height * width);
out.at<uchar>(y, x) = (uchar)g;
}
}
return out;
}
// Main
int main(int argc, const char* argv[]){
// read original image
cv::Mat img = cv::imread("imori.jpg", cv::IMREAD_COLOR);
// Fourier coefficient
fourier_str fourier_s;
// output image
cv::Mat out = cv::Mat::zeros(height, width, CV_8UC1);
// BGR -> Gray
cv::Mat gray = BGR2GRAY(img);
// DFT
fourier_s = dft(gray, fourier_s);
// IDFT
out = idft(out, fourier_s);
//cv::imwrite("out.jpg", out);
cv::imshow("answer", out);
cv::waitKey(0);
cv::destroyAllWindows();
return 0;
}