forked from ShirAmir/dino-vit-features
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcorrespondences.py
230 lines (206 loc) · 12.6 KB
/
correspondences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import torch
from pathlib import Path
from extractor import ViTExtractor
from tqdm import tqdm
import numpy as np
from sklearn.cluster import KMeans
from PIL import Image
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from typing import List, Tuple
def find_correspondences(image_path1: str, image_path2: str, num_pairs: int = 10, load_size: int = 224, layer: int = 9,
facet: str = 'key', bin: bool = True, thresh: float = 0.05, model_type: str = 'dino_vits8',
stride: int = 4) -> Tuple[List[Tuple[float, float]], List[Tuple[float, float]],
Image.Image, Image.Image]:
"""
finding point correspondences between two images.
:param image_path1: path to the first image.
:param image_path2: path to the second image.
:param num_pairs: number of outputted corresponding pairs.
:param load_size: size of the smaller edge of loaded images. If None, does not resize.
:param layer: layer to extract descriptors from.
:param facet: facet to extract descriptors from.
:param bin: if True use a log-binning descriptor.
:param thresh: threshold of saliency maps to distinguish fg and bg.
:param model_type: type of model to extract descriptors from.
:param stride: stride of the model.
:return: list of points from image_path1, list of corresponding points from image_path2, the processed pil image of
image_path1, and the processed pil image of image_path2.
"""
# extracting descriptors for each image
device = 'cuda' if torch.cuda.is_available() else 'cpu'
extractor = ViTExtractor(model_type, stride, device=device)
image1_batch, image1_pil = extractor.preprocess(image_path1, load_size)
descriptors1 = extractor.extract_descriptors(image1_batch.to(device), layer, facet, bin)
num_patches1, load_size1 = extractor.num_patches, extractor.load_size
image2_batch, image2_pil = extractor.preprocess(image_path2, load_size)
descriptors2 = extractor.extract_descriptors(image2_batch.to(device), layer, facet, bin)
num_patches2, load_size2 = extractor.num_patches, extractor.load_size
# extracting saliency maps for each image
saliency_map1 = extractor.extract_saliency_maps(image1_batch.to(device))[0]
saliency_map2 = extractor.extract_saliency_maps(image2_batch.to(device))[0]
# threshold saliency maps to get fg / bg masks
fg_mask1 = saliency_map1 > thresh
fg_mask2 = saliency_map2 > thresh
# calculate similarity between image1 and image2 descriptors
similarities = chunk_cosine_sim(descriptors1, descriptors2)
# calculate best buddies
image_idxs = torch.arange(num_patches1[0] * num_patches1[1], device=device)
sim_1, nn_1 = torch.max(similarities, dim=-1) # nn_1 - indices of block2 closest to block1
sim_2, nn_2 = torch.max(similarities, dim=-2) # nn_2 - indices of block1 closest to block2
sim_1, nn_1 = sim_1[0, 0], nn_1[0, 0]
sim_2, nn_2 = sim_2[0, 0], nn_2[0, 0]
bbs_mask = nn_2[nn_1] == image_idxs
# remove best buddies where at least one descriptor is marked bg by saliency mask.
fg_mask2_new_coors = nn_2[fg_mask2]
fg_mask2_mask_new_coors = torch.zeros(num_patches1[0] * num_patches1[1], dtype=torch.bool, device=device)
fg_mask2_mask_new_coors[fg_mask2_new_coors] = True
bbs_mask = torch.bitwise_and(bbs_mask, fg_mask1)
bbs_mask = torch.bitwise_and(bbs_mask, fg_mask2_mask_new_coors)
# applying k-means to extract k high quality well distributed correspondence pairs
bb_descs1 = descriptors1[0, 0, bbs_mask, :].cpu().numpy()
bb_descs2 = descriptors2[0, 0, nn_1[bbs_mask], :].cpu().numpy()
# apply k-means on a concatenation of a pairs descriptors.
all_keys_together = np.concatenate((bb_descs1, bb_descs2), axis=1)
n_clusters = min(num_pairs, len(all_keys_together)) # if not enough pairs, show all found pairs.
length = np.sqrt((all_keys_together ** 2).sum(axis=1))[:, None]
normalized = all_keys_together / length
kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(normalized)
bb_topk_sims = np.full((n_clusters), -np.inf)
bb_indices_to_show = np.full((n_clusters), -np.inf)
# rank pairs by their mean saliency value
bb_cls_attn1 = saliency_map1[bbs_mask]
bb_cls_attn2 = saliency_map2[nn_1[bbs_mask]]
bb_cls_attn = (bb_cls_attn1 + bb_cls_attn2) / 2
ranks = bb_cls_attn
for k in range(n_clusters):
for i, (label, rank) in enumerate(zip(kmeans.labels_, ranks)):
if rank > bb_topk_sims[label]:
bb_topk_sims[label] = rank
bb_indices_to_show[label] = i
# get coordinates to show
indices_to_show = torch.nonzero(bbs_mask, as_tuple=False).squeeze(dim=1)[
bb_indices_to_show] # close bbs
img1_indices_to_show = torch.arange(num_patches1[0] * num_patches1[1], device=device)[indices_to_show]
img2_indices_to_show = nn_1[indices_to_show]
# coordinates in descriptor map's dimensions
img1_y_to_show = (img1_indices_to_show / num_patches1[1]).cpu().numpy()
img1_x_to_show = (img1_indices_to_show % num_patches1[1]).cpu().numpy()
img2_y_to_show = (img2_indices_to_show / num_patches2[1]).cpu().numpy()
img2_x_to_show = (img2_indices_to_show % num_patches2[1]).cpu().numpy()
points1, points2 = [], []
for y1, x1, y2, x2 in zip(img1_y_to_show, img1_x_to_show, img2_y_to_show, img2_x_to_show):
x1_show = (int(x1) - 1) * extractor.stride[1] + extractor.stride[1] + extractor.p // 2
y1_show = (int(y1) - 1) * extractor.stride[0] + extractor.stride[0] + extractor.p // 2
x2_show = (int(x2) - 1) * extractor.stride[1] + extractor.stride[1] + extractor.p // 2
y2_show = (int(y2) - 1) * extractor.stride[0] + extractor.stride[0] + extractor.p // 2
points1.append((y1_show, x1_show))
points2.append((y2_show, x2_show))
return points1, points2, image1_pil, image2_pil
def draw_correspondences(points1: List[Tuple[float, float]], points2: List[Tuple[float, float]],
image1: Image.Image, image2: Image.Image) -> Tuple[plt.Figure, plt.Figure]:
"""
draw point correspondences on images.
:param points1: a list of (y, x) coordinates of image1, corresponding to points2.
:param points2: a list of (y, x) coordinates of image2, corresponding to points1.
:param image1: a PIL image.
:param image2: a PIL image.
:return: two figures of images with marked points.
"""
assert len(points1) == len(points2), f"points lengths are incompatible: {len(points1)} != {len(points2)}."
num_points = len(points1)
fig1, ax1 = plt.subplots()
ax1.axis('off')
fig2, ax2 = plt.subplots()
ax2.axis('off')
ax1.imshow(image1)
ax2.imshow(image2)
if num_points > 15:
cmap = plt.get_cmap('tab10')
else:
cmap = ListedColormap(["red", "yellow", "blue", "lime", "magenta", "indigo", "orange", "cyan", "darkgreen",
"maroon", "black", "white", "chocolate", "gray", "blueviolet"])
colors = np.array([cmap(x) for x in range(num_points)])
radius1, radius2 = 1, 2
for point1, point2, color in zip(points1, points2, colors):
y1, x1 = point1
circ1_1 = plt.Circle((x1, y1), radius1, facecolor=color, edgecolor='white', alpha=0.5)
circ1_2 = plt.Circle((x1, y1), radius2, facecolor=color, edgecolor='white')
ax1.add_patch(circ1_1)
ax1.add_patch(circ1_2)
y2, x2 = point2
circ2_1 = plt.Circle((x2, y2), radius1, facecolor=color, edgecolor='white', alpha=0.5)
circ2_2 = plt.Circle((x2, y2), radius2, facecolor=color, edgecolor='white')
ax2.add_patch(circ2_1)
ax2.add_patch(circ2_2)
return fig1, fig2
def chunk_cosine_sim(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
""" Computes cosine similarity between all possible pairs in two sets of vectors.
Operates on chunks so no large amount of GPU RAM is required.
:param x: an tensor of descriptors of shape Bx1x(t_x)xd' where d' is the dimensionality of the descriptors and t_x
is the number of tokens in x.
:param y: a tensor of descriptors of shape Bx1x(t_y)xd' where d' is the dimensionality of the descriptors and t_y
is the number of tokens in y.
:return: cosine similarity between all descriptors in x and all descriptors in y. Has shape of Bx1x(t_x)x(t_y) """
result_list = []
num_token_x = x.shape[2]
for token_idx in range(num_token_x):
token = x[:, :, token_idx, :].unsqueeze(dim=2) # Bx1x1xd'
result_list.append(torch.nn.CosineSimilarity(dim=3)(token, y)) # Bx1xt
return torch.stack(result_list, dim=2) # Bx1x(t_x)x(t_y)
""" taken from https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse"""
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Facilitate ViT Descriptor point correspondences.')
parser.add_argument('--root_dir', type=str, required=True, help='The root dir of image pairs.')
parser.add_argument('--save_dir', type=str, required=True, help='The root save dir for image pairs results.')
parser.add_argument('--load_size', default=224, type=int, help='load size of the input image.')
parser.add_argument('--stride', default=4, type=int, help="""stride of first convolution layer.
small stride -> higher resolution.""")
parser.add_argument('--model_type', default='dino_vits8', type=str,
help="""type of model to extract.
Choose from [dino_vits8 | dino_vits16 | dino_vitb8 | dino_vitb16 | vit_small_patch8_224 |
vit_small_patch16_224 | vit_base_patch8_224 | vit_base_patch16_224]""")
parser.add_argument('--facet', default='key', type=str, help="""facet to create descriptors from.
options: ['key' | 'query' | 'value' | 'token']""")
parser.add_argument('--layer', default=9, type=int, help="layer to create descriptors from.")
parser.add_argument('--bin', default='True', type=str2bool, help="create a binned descriptor if True.")
parser.add_argument('--thresh', default=0.05, type=float, help='saliency maps threshold to distinguish fg / bg.')
parser.add_argument('--num_pairs', default=10, type=int, help='Final number of correspondences.')
args = parser.parse_args()
with torch.no_grad():
# prepare directories
root_dir = Path(args.root_dir)
pair_dirs = [x for x in root_dir.iterdir() if x.is_dir()]
save_dir = Path(args.save_dir)
save_dir.mkdir(exist_ok=True, parents=True)
for pair_dir in tqdm(pair_dirs):
curr_images = [x for x in pair_dir.iterdir() if x.suffix.lower() in ['.jpg', '.png', '.jpeg']]
assert len(curr_images) == 2, f"{pair_dir} contains {len(curr_images)} images instead of 2."
curr_save_dir = save_dir / pair_dir.name
curr_save_dir.mkdir(parents=True, exist_ok=True)
# compute point correspondences
points1, points2, image1_pil, image2_pil = find_correspondences(curr_images[0], curr_images[1],
args.num_pairs, args.load_size, args.layer,
args.facet, args.bin, args.thresh)
# saving point correspondences
file1 = open(curr_save_dir / "correspondence_A.txt", "w")
file2 = open(curr_save_dir / "correspondence_Bt.txt", "w")
for point1, point2 in zip(points1, points2):
file1.write(f'{point1}\n')
file2.write(f'{point2}\n')
file1.close()
file2.close()
fig1, fig2 = draw_correspondences(points1, points2, image1_pil, image2_pil)
fig1.savefig(curr_save_dir / f'{Path(curr_images[0]).stem}_corresp.png', bbox_inches='tight', pad_inches=0)
fig2.savefig(curr_save_dir / f'{Path(curr_images[1]).stem}_corresp.png', bbox_inches='tight', pad_inches=0)
plt.close('all')