-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathoverlay_pose_on_image.py
57 lines (40 loc) · 1.91 KB
/
overlay_pose_on_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import mediapipe as mp # Import mediapipe
import cv2 # Import opencv
import argparse
"""
Utility script to load an image and run it through the mediapipe models to draw any pose information
Usage:
python overlay_pose_on_image.py --image-path ./data/Y.png
python overlay_pose_on_image.py --image-path ./data/Y.png --output-path ./data/Y-pose.png
"""
mp_drawing = mp.solutions.drawing_utils # Drawing helpers
mp_pose = mp.solutions.pose
if __name__ == '__main__':
ap = argparse.ArgumentParser()
ap.add_argument("--image-path", required=True, help="path to image to load")
ap.add_argument("--output-path", required=False, help="path/filename of image to write with pose")
args = vars(ap.parse_args())
image_path = args['image_path']
output_image_path = args['output_path']
# save an image of the pose to so we can overlay points
image = cv2.imread(image_path)
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
# Recolor Feed
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
# Make Detections
results = pose.process(image)
# face_landmarks, pose_landmarks, left_hand_landmarks, right_hand_landmarks
# Recolor image back to BGR for rendering
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# 4. Pose Detections
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(245, 117, 66), thickness=2, circle_radius=4),
mp_drawing.DrawingSpec(color=(245, 66, 230), thickness=2, circle_radius=2)
)
cv2.imshow('Pose Detection', image)
if output_image_path:
cv2.imwrite(output_image_path, image)
cv2.waitKey(0)
cv2.destroyAllWindows()