-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval_mot.py
174 lines (149 loc) · 5.68 KB
/
eval_mot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import cv2
import logging
import motmetrics as mm
#from tracker.VisDrone_tracker import OnlineTracker
from tracker.MOT17_tracker import OnlineTracker
#from tracker.MOTDT_original_tracker import OnlineTracker
from datasets.mot_seq import get_loader
from utils import visualization as vis
from utils.log import logger
from utils.timer import Timer
from utils.evaluation import Evaluator
cur_dir = os.getcwd()
def mkdirs(path):
if os.path.exists(path):
return
os.makedirs(path)
def write_results(filename, results, data_type):
if data_type == 'mot':
save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n'
elif data_type == 'kitti':
save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
else:
raise ValueError(data_type)
with open(filename, 'w') as f:
for frame_id, tlwhs, track_ids in results:
if data_type == 'kitti':
frame_id -= 1
for tlwh, track_id in zip(tlwhs, track_ids):
if track_id < 0:
continue
x1, y1, w, h = tlwh
x2, y2 = x1 + w, y1 + h
line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h)
f.write(line)
logger.info('save results to {}'.format(filename))
def eval_seq(dataloader, data_type, result_filename, save_dir=None, show_image=True):
if save_dir is not None:
mkdirs(save_dir)
tracker = OnlineTracker()
timer = Timer()
results = []
wait_time = 1
for frame_id, batch in enumerate(dataloader):
if frame_id % 20 == 0:
logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1./max(1e-5, timer.average_time)))
frame, det_tlwhs, det_scores, _, _ = batch
# run tracking
timer.tic()
online_targets = tracker.update(frame, det_tlwhs, None)
online_tlwhs = []
online_ids = []
for t in online_targets:
online_tlwhs.append(t.tlwh)
online_ids.append(t.track_id)
timer.toc()
# save results
results.append((frame_id + 1, online_tlwhs, online_ids))
online_im = vis.plot_tracking(frame, online_tlwhs, online_ids, frame_id=frame_id,
fps=1. / timer.average_time)
if show_image:
cv2.imshow('online_im', online_im)
if save_dir is not None:
cv2.imwrite(os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im)
key = cv2.waitKey(wait_time)
key = chr(key % 128).lower()
if key == 'q':
exit(0)
elif key == 'p':
cv2.waitKey(0)
elif key == 'a':
wait_time = int(not wait_time)
# save results
write_results(result_filename, results, data_type)
def main(data_root='/data/MOT16/train', det_root=None,
seqs=('MOT16-05',), exp_name='demo', save_image=False, show_image=True):
logger.setLevel(logging.INFO)
result_root = os.path.join(data_root, '..', 'results', exp_name)
mkdirs(result_root)
data_type = 'mot'
# run tracking
accs = []
for seq in seqs:
output_dir = os.path.join(data_root, 'outputs_revised', seq) if save_image else None
print("seq : ", seq)
logger.info('start seq: {}'.format(seq))
loader = get_loader(data_root, det_root, seq)
result_filename = os.path.join(result_root, '{}.txt'.format(seq))
eval_seq(loader, data_type, result_filename,
save_dir=output_dir, show_image=show_image)
# eval
logger.info('Evaluate seq: {}'.format(seq))
evaluator = Evaluator(data_root, seq, data_type)
accs.append(evaluator.eval_file(result_filename))
# get summary
# metrics = ['mota', 'num_switches', 'idp', 'idr', 'idf1', 'precision', 'recall']
metrics = mm.metrics.motchallenge_metrics
# metrics = None
mh = mm.metrics.create()
summary = Evaluator.get_summary(accs, seqs, metrics)
strsummary = mm.io.render_summary(
summary,
formatters=mh.formatters,
namemap=mm.io.motchallenge_metric_names
)
print(strsummary)
Evaluator.save_summary(summary, os.path.join(result_root, f'summary_{exp_name}.xlsx'))
# # eval
# try:
# import matlab.engine as matlab_engine
# eval_root = '/data/MOT17/amilan-motchallenge-devkit'
# seqmap = 'eval_mot_generated.txt'
# with open(os.path.join(eval_root, 'seqmaps', seqmap), 'w') as f:
# f.write('name\n')
# for seq in seqs:
# f.write('{}\n'.format(seq))
#
# logger.info('start eval {} in matlab...'.format(result_root))
# eng = matlab_engine.start_matlab()
# eng.cd(eval_root)
# eng.run_eval(data_root, result_root, seqmap, '', nargout=0)
# except ImportError:
# logger.warning('import matlab.engine failed...')
if __name__ == '__main__':
# import fire
# fire.Fire(main)
seqs_str = '''
MOT17-02-FRCNN
MOT17-05-FRCNN
MOT17-09-FRCNN
MOT17-11-FRCNN
MOT17-13-FRCNN
'''
seqs_one = "MOT17-02-FRCNN"
visdrone = """
uav0000086_00000_v
uav0000117_02622_v
uav0000137_00458_v
uav0000182_00000_v
uav0000305_00000_v
uav0000339_00001_v
"""
visdrone_one = "uav0000268_05773_v"
seqs = [seq.strip() for seq in seqs_str.split()]
main(data_root='./data/MOT17/train',
seqs=seqs,
exp_name='MOT17_revised_img_save',
save_image=True,
show_image=False)