forked from yoonkim/CNN_sentence
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv_net_sentence.py
325 lines (307 loc) · 13.2 KB
/
conv_net_sentence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
"""
Sample code for
Convolutional Neural Networks for Sentence Classification
http://arxiv.org/pdf/1408.5882v2.pdf
Much of the code is modified from
- deeplearning.net (for ConvNet classes)
- https://github.com/mdenil/dropout (for dropout)
- https://groups.google.com/forum/#!topic/pylearn-dev/3QbKtCumAW4 (for Adadelta)
"""
import cPickle
import numpy as np
from collections import defaultdict, OrderedDict
import theano
import theano.tensor as T
import re
import warnings
import sys
import time
warnings.filterwarnings("ignore")
#different non-linearities
def ReLU(x):
y = T.maximum(0.0, x)
return(y)
def Sigmoid(x):
y = T.nnet.sigmoid(x)
return(y)
def Tanh(x):
y = T.tanh(x)
return(y)
def Iden(x):
y = x
return(y)
def train_conv_net(datasets,
U,
img_w=300,
filter_hs=[3,4,5],
hidden_units=[100,2],
dropout_rate=[0.5],
shuffle_batch=True,
n_epochs=25,
batch_size=50,
lr_decay = 0.95,
conv_non_linear="relu",
activations=[Iden],
sqr_norm_lim=9,
non_static=True):
"""
Train a simple conv net
img_h = sentence length (padded where necessary)
img_w = word vector length (300 for word2vec)
filter_hs = filter window sizes
hidden_units = [x,y] x is the number of feature maps (per filter window), and y is the penultimate layer
sqr_norm_lim = s^2 in the paper
lr_decay = adadelta decay parameter
"""
rng = np.random.RandomState(3435)
img_h = len(datasets[0][0])-1
filter_w = img_w
feature_maps = hidden_units[0]
filter_shapes = []
pool_sizes = []
for filter_h in filter_hs:
filter_shapes.append((feature_maps, 1, filter_h, filter_w))
pool_sizes.append((img_h-filter_h+1, img_w-filter_w+1))
parameters = [("image shape",img_h,img_w),("filter shape",filter_shapes), ("hidden_units",hidden_units),
("dropout", dropout_rate), ("batch_size",batch_size),("non_static", non_static),
("learn_decay",lr_decay), ("conv_non_linear", conv_non_linear), ("non_static", non_static)
,("sqr_norm_lim",sqr_norm_lim),("shuffle_batch",shuffle_batch)]
print parameters
#define model architecture
index = T.lscalar()
x = T.matrix('x')
y = T.ivector('y')
Words = theano.shared(value = U, name = "Words")
zero_vec_tensor = T.vector()
zero_vec = np.zeros(img_w)
set_zero = theano.function([zero_vec_tensor], updates=[(Words, T.set_subtensor(Words[0,:], zero_vec_tensor))], allow_input_downcast=True)
layer0_input = Words[T.cast(x.flatten(),dtype="int32")].reshape((x.shape[0],1,x.shape[1],Words.shape[1]))
conv_layers = []
layer1_inputs = []
for i in xrange(len(filter_hs)):
filter_shape = filter_shapes[i]
pool_size = pool_sizes[i]
conv_layer = LeNetConvPoolLayer(rng, input=layer0_input,image_shape=(batch_size, 1, img_h, img_w),
filter_shape=filter_shape, poolsize=pool_size, non_linear=conv_non_linear)
layer1_input = conv_layer.output.flatten(2)
conv_layers.append(conv_layer)
layer1_inputs.append(layer1_input)
layer1_input = T.concatenate(layer1_inputs,1)
hidden_units[0] = feature_maps*len(filter_hs)
classifier = MLPDropout(rng, input=layer1_input, layer_sizes=hidden_units, activations=activations, dropout_rates=dropout_rate)
#define parameters of the model and update functions using adadelta
params = classifier.params
for conv_layer in conv_layers:
params += conv_layer.params
if non_static:
#if word vectors are allowed to change, add them as model parameters
params += [Words]
cost = classifier.negative_log_likelihood(y)
dropout_cost = classifier.dropout_negative_log_likelihood(y)
grad_updates = sgd_updates_adadelta(params, dropout_cost, lr_decay, 1e-6, sqr_norm_lim)
#shuffle dataset and assign to mini batches. if dataset size is not a multiple of mini batches, replicate
#extra data (at random)
np.random.seed(3435)
if datasets[0].shape[0] % batch_size > 0:
extra_data_num = batch_size - datasets[0].shape[0] % batch_size
train_set = np.random.permutation(datasets[0])
extra_data = train_set[:extra_data_num]
new_data=np.append(datasets[0],extra_data,axis=0)
else:
new_data = datasets[0]
new_data = np.random.permutation(new_data)
n_batches = new_data.shape[0]/batch_size
n_train_batches = int(np.round(n_batches*0.9))
#divide train set into train/val sets
test_set_x = datasets[1][:,:img_h]
test_set_y = np.asarray(datasets[1][:,-1],"int32")
train_set = new_data[:n_train_batches*batch_size,:]
val_set = new_data[n_train_batches*batch_size:,:]
train_set_x, train_set_y = shared_dataset((train_set[:,:img_h],train_set[:,-1]))
val_set_x, val_set_y = shared_dataset((val_set[:,:img_h],val_set[:,-1]))
n_val_batches = n_batches - n_train_batches
val_model = theano.function([index], classifier.errors(y),
givens={
x: val_set_x[index * batch_size: (index + 1) * batch_size],
y: val_set_y[index * batch_size: (index + 1) * batch_size]},
allow_input_downcast=True)
#compile theano functions to get train/val/test errors
test_model = theano.function([index], classifier.errors(y),
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size]},
allow_input_downcast=True)
train_model = theano.function([index], cost, updates=grad_updates,
givens={
x: train_set_x[index*batch_size:(index+1)*batch_size],
y: train_set_y[index*batch_size:(index+1)*batch_size]},
allow_input_downcast = True)
test_pred_layers = []
test_size = test_set_x.shape[0]
test_layer0_input = Words[T.cast(x.flatten(),dtype="int32")].reshape((test_size,1,img_h,Words.shape[1]))
for conv_layer in conv_layers:
test_layer0_output = conv_layer.predict(test_layer0_input, test_size)
test_pred_layers.append(test_layer0_output.flatten(2))
test_layer1_input = T.concatenate(test_pred_layers, 1)
test_y_pred = classifier.predict(test_layer1_input)
test_error = T.mean(T.neq(test_y_pred, y))
test_model_all = theano.function([x,y], test_error, allow_input_downcast = True)
#start training over mini-batches
print '... training'
epoch = 0
best_val_perf = 0
val_perf = 0
test_perf = 0
cost_epoch = 0
while (epoch < n_epochs):
start_time = time.time()
epoch = epoch + 1
if shuffle_batch:
for minibatch_index in np.random.permutation(range(n_train_batches)):
cost_epoch = train_model(minibatch_index)
set_zero(zero_vec)
else:
for minibatch_index in xrange(n_train_batches):
cost_epoch = train_model(minibatch_index)
set_zero(zero_vec)
train_losses = [test_model(i) for i in xrange(n_train_batches)]
train_perf = 1 - np.mean(train_losses)
val_losses = [val_model(i) for i in xrange(n_val_batches)]
val_perf = 1- np.mean(val_losses)
print('epoch: %i, training time: %.2f secs, train perf: %.2f %%, val perf: %.2f %%' % (epoch, time.time()-start_time, train_perf * 100., val_perf*100.))
if val_perf >= best_val_perf:
best_val_perf = val_perf
test_loss = test_model_all(test_set_x,test_set_y)
test_perf = 1- test_loss
return test_perf
def shared_dataset(data_xy, borrow=True):
""" Function that loads the dataset into shared variables
The reason we store our dataset in shared variables is to allow
Theano to copy it into the GPU memory (when code is run on GPU).
Since copying data into the GPU is slow, copying a minibatch everytime
is needed (the default behaviour if the data is not in a shared
variable) would lead to a large decrease in performance.
"""
data_x, data_y = data_xy
shared_x = theano.shared(np.asarray(data_x,
dtype=theano.config.floatX),
borrow=borrow)
shared_y = theano.shared(np.asarray(data_y,
dtype=theano.config.floatX),
borrow=borrow)
return shared_x, T.cast(shared_y, 'int32')
def sgd_updates_adadelta(params,cost,rho=0.95,epsilon=1e-6,norm_lim=9,word_vec_name='Words'):
"""
adadelta update rule, mostly from
https://groups.google.com/forum/#!topic/pylearn-dev/3QbKtCumAW4 (for Adadelta)
"""
updates = OrderedDict({})
exp_sqr_grads = OrderedDict({})
exp_sqr_ups = OrderedDict({})
gparams = []
for param in params:
empty = np.zeros_like(param.get_value())
exp_sqr_grads[param] = theano.shared(value=as_floatX(empty),name="exp_grad_%s" % param.name)
gp = T.grad(cost, param)
exp_sqr_ups[param] = theano.shared(value=as_floatX(empty), name="exp_grad_%s" % param.name)
gparams.append(gp)
for param, gp in zip(params, gparams):
exp_sg = exp_sqr_grads[param]
exp_su = exp_sqr_ups[param]
up_exp_sg = rho * exp_sg + (1 - rho) * T.sqr(gp)
updates[exp_sg] = up_exp_sg
step = -(T.sqrt(exp_su + epsilon) / T.sqrt(up_exp_sg + epsilon)) * gp
updates[exp_su] = rho * exp_su + (1 - rho) * T.sqr(step)
stepped_param = param + step
if (param.get_value(borrow=True).ndim == 2) and (param.name!='Words'):
col_norms = T.sqrt(T.sum(T.sqr(stepped_param), axis=0))
desired_norms = T.clip(col_norms, 0, T.sqrt(norm_lim))
scale = desired_norms / (1e-7 + col_norms)
updates[param] = stepped_param * scale
else:
updates[param] = stepped_param
return updates
def as_floatX(variable):
if isinstance(variable, float):
return np.cast[theano.config.floatX](variable)
if isinstance(variable, np.ndarray):
return np.cast[theano.config.floatX](variable)
return theano.tensor.cast(variable, theano.config.floatX)
def safe_update(dict_to, dict_from):
"""
re-make update dictionary for safe updating
"""
for key, val in dict(dict_from).iteritems():
if key in dict_to:
raise KeyError(key)
dict_to[key] = val
return dict_to
def get_idx_from_sent(sent, word_idx_map, max_l=51, k=300, filter_h=5):
"""
Transforms sentence into a list of indices. Pad with zeroes.
"""
x = []
pad = filter_h - 1
for i in xrange(pad):
x.append(0)
words = sent.split()
for word in words:
if word in word_idx_map:
x.append(word_idx_map[word])
while len(x) < max_l+2*pad:
x.append(0)
return x
def make_idx_data_cv(revs, word_idx_map, cv, max_l=51, k=300, filter_h=5):
"""
Transforms sentences into a 2-d matrix.
"""
train, test = [], []
for rev in revs:
sent = get_idx_from_sent(rev["text"], word_idx_map, max_l, k, filter_h)
sent.append(rev["y"])
if rev["split"]==cv:
test.append(sent)
else:
train.append(sent)
train = np.array(train,dtype="int")
test = np.array(test,dtype="int")
return [train, test]
if __name__=="__main__":
print "loading data...",
x = cPickle.load(open("mr.p","rb"))
revs, W, W2, word_idx_map, vocab = x[0], x[1], x[2], x[3], x[4]
print "data loaded!"
mode= sys.argv[1]
word_vectors = sys.argv[2]
if mode=="-nonstatic":
print "model architecture: CNN-non-static"
non_static=True
elif mode=="-static":
print "model architecture: CNN-static"
non_static=False
execfile("conv_net_classes.py")
if word_vectors=="-rand":
print "using: random vectors"
U = W2
elif word_vectors=="-word2vec":
print "using: word2vec vectors"
U = W
results = []
r = range(0,10)
for i in r:
datasets = make_idx_data_cv(revs, word_idx_map, i, max_l=56,k=300, filter_h=5)
perf = train_conv_net(datasets,
U,
lr_decay=0.95,
filter_hs=[3,4,5],
conv_non_linear="relu",
hidden_units=[100,2],
shuffle_batch=True,
n_epochs=25,
sqr_norm_lim=9,
non_static=non_static,
batch_size=50,
dropout_rate=[0.5])
print "cv: " + str(i) + ", perf: " + str(perf)
results.append(perf)
print str(np.mean(results))