Skip to content

Latest commit

 

History

History
757 lines (686 loc) · 42.3 KB

1_config.md

File metadata and controls

757 lines (686 loc) · 42.3 KB

Tutorial 1: Learn about Configs

We use python files as configs, incorporate modular and inheritance design into our config system, which is convenient to conduct various experiments. You can find all the provided configs under $MMAction2/configs. If you wish to inspect the config file, you may run python tools/analysis/print_config.py /PATH/TO/CONFIG to see the complete config.

Modify config through script arguments

When submitting jobs using "tools/train.py" or "tools/test.py", you may specify --cfg-options to in-place modify the config.

  • Update config keys of dict.

    The config options can be specified following the order of the dict keys in the original config. For example, --cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to train mode.

  • Update keys inside a list of configs.

    Some config dicts are composed as a list in your config. For example, the training pipeline data.train.pipeline is normally a list e.g. [dict(type='SampleFrames'), ...]. If you want to change 'SampleFrames' to 'DenseSampleFrames' in the pipeline, you may specify --cfg-options data.train.pipeline.0.type=DenseSampleFrames.

  • Update values of list/tuples.

    If the value to be updated is a list or a tuple. For example, the config file normally sets workflow=[('train', 1)]. If you want to change this key, you may specify --cfg-options workflow="[(train,1),(val,1)]". Note that the quotation mark " is necessary to support list/tuple data types, and that NO white space is allowed inside the quotation marks in the specified value.

Config File Structure

There are 3 basic component types under config/_base_, model, schedule, default_runtime. Many methods could be easily constructed with one of each like TSN, I3D, SlowOnly, etc. The configs that are composed by components from _base_ are called primitive.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from exiting methods. For example, if some modification is made base on TSN, users may first inherit the basic TSN structure by specifying _base_ = ../tsn/tsn_r50_1x1x3_100e_kinetics400_rgb.py, then modify the necessary fields in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods, you may create a folder under configs/TASK.

Please refer to mmcv for detailed documentation.

Config File Naming Convention

We follow the style below to name config files. Contributors are advised to follow the same style.

{model}_[model setting]_{backbone}_[misc]_{data setting}_[gpu x batch_per_gpu]_{schedule}_{dataset}_{modality}

{xxx} is required field and [yyy] is optional.

  • {model}: model type, e.g. tsn, i3d, etc.
  • [model setting]: specific setting for some models.
  • {backbone}: backbone type, e.g. r50 (ResNet-50), etc.
  • [misc]: miscellaneous setting/plugins of model, e.g. dense, 320p, video, etc.
  • {data setting}: frame sample setting in {clip_len}x{frame_interval}x{num_clips} format.
  • [gpu x batch_per_gpu]: GPUs and samples per GPU.
  • {schedule}: training schedule, e.g. 20e means 20 epochs.
  • {dataset}: dataset name, e.g. kinetics400, mmit, etc.
  • {modality}: frame modality, e.g. rgb, flow, etc.

Config System for Action localization

We incorporate modular design into our config system, which is convenient to conduct various experiments.

  • An Example of BMN

    To help the users have a basic idea of a complete config structure and the modules in an action localization system, we make brief comments on the config of BMN as the following. For more detailed usage and alternative for per parameter in each module, please refer to the API documentation.

    # model settings
    model = dict(  # Config of the model
        type='BMN',  # Type of the localizer
        temporal_dim=100,  # Total frames selected for each video
        boundary_ratio=0.5,  # Ratio for determining video boundaries
        num_samples=32,  # Number of samples for each proposal
        num_samples_per_bin=3,  # Number of bin samples for each sample
        feat_dim=400,  # Dimension of feature
        soft_nms_alpha=0.4,  # Soft NMS alpha
        soft_nms_low_threshold=0.5,  # Soft NMS low threshold
        soft_nms_high_threshold=0.9,  # Soft NMS high threshold
        post_process_top_k=100)  # Top k proposals in post process
    # model training and testing settings
    train_cfg = None  # Config of training hyperparameters for BMN
    test_cfg = dict(average_clips='score')  # Config for testing hyperparameters for BMN
    
    # dataset settings
    dataset_type = 'ActivityNetDataset'  # Type of dataset for training, validation and testing
    data_root = 'data/activitynet_feature_cuhk/csv_mean_100/'  # Root path to data for training
    data_root_val = 'data/activitynet_feature_cuhk/csv_mean_100/'  # Root path to data for validation and testing
    ann_file_train = 'data/ActivityNet/anet_anno_train.json'  # Path to the annotation file for training
    ann_file_val = 'data/ActivityNet/anet_anno_val.json'  # Path to the annotation file for validation
    ann_file_test = 'data/ActivityNet/anet_anno_test.json'  # Path to the annotation file for testing
    
    train_pipeline = [  # List of training pipeline steps
        dict(type='LoadLocalizationFeature'),  # Load localization feature pipeline
        dict(type='GenerateLocalizationLabels'),  # Generate localization labels pipeline
        dict(  # Config of Collect
            type='Collect',  # Collect pipeline that decides which keys in the data should be passed to the localizer
            keys=['raw_feature', 'gt_bbox'],  # Keys of input
            meta_name='video_meta',  # Meta name
            meta_keys=['video_name']),  # Meta keys of input
        dict(  # Config of ToTensor
            type='ToTensor',  # Convert other types to tensor type pipeline
            keys=['raw_feature']),  # Keys to be converted from image to tensor
        dict(  # Config of ToDataContainer
            type='ToDataContainer',  # Pipeline to convert the data to DataContainer
            fields=[dict(key='gt_bbox', stack=False, cpu_only=True)])  # Required fields to be converted with keys and attributes
    ]
    val_pipeline = [  # List of validation pipeline steps
        dict(type='LoadLocalizationFeature'),  # Load localization feature pipeline
        dict(type='GenerateLocalizationLabels'),  # Generate localization labels pipeline
        dict(  # Config of Collect
            type='Collect',  # Collect pipeline that decides which keys in the data should be passed to the localizer
            keys=['raw_feature', 'gt_bbox'],  # Keys of input
            meta_name='video_meta',  # Meta name
            meta_keys=[
                'video_name', 'duration_second', 'duration_frame', 'annotations',
                'feature_frame'
            ]),  # Meta keys of input
        dict(  # Config of ToTensor
            type='ToTensor',  # Convert other types to tensor type pipeline
            keys=['raw_feature']),  # Keys to be converted from image to tensor
        dict(  # Config of ToDataContainer
            type='ToDataContainer',  # Pipeline to convert the data to DataContainer
            fields=[dict(key='gt_bbox', stack=False, cpu_only=True)])  # Required fields to be converted with keys and attributes
    ]
    test_pipeline = [  # List of testing pipeline steps
        dict(type='LoadLocalizationFeature'),  # Load localization feature pipeline
        dict(  # Config of Collect
            type='Collect',  # Collect pipeline that decides which keys in the data should be passed to the localizer
            keys=['raw_feature'],  # Keys of input
            meta_name='video_meta',  # Meta name
            meta_keys=[
                'video_name', 'duration_second', 'duration_frame', 'annotations',
                'feature_frame'
            ]),  # Meta keys of input
        dict(  # Config of ToTensor
            type='ToTensor',  # Convert other types to tensor type pipeline
            keys=['raw_feature']),  # Keys to be converted from image to tensor
    ]
    data = dict(  # Config of data
        videos_per_gpu=8,  # Batch size of each single GPU
        workers_per_gpu=8,  # Workers to pre-fetch data for each single GPU
        train_dataloader=dict(  # Additional config of train dataloader
            drop_last=True),  # Whether to drop out the last batch of data in training
        val_dataloader=dict(  # Additional config of validation dataloader
            videos_per_gpu=1),  # Batch size of each single GPU during evaluation
        test_dataloader=dict(  # Additional config of test dataloader
            videos_per_gpu=2),  # Batch size of each single GPU during testing
        test=dict(  # Testing dataset config
            type=dataset_type,
            ann_file=ann_file_test,
            pipeline=test_pipeline,
            data_prefix=data_root_val),
        val=dict(  # Validation dataset config
            type=dataset_type,
            ann_file=ann_file_val,
            pipeline=val_pipeline,
            data_prefix=data_root_val),
        train=dict(  # Training dataset config
            type=dataset_type,
            ann_file=ann_file_train,
            pipeline=train_pipeline,
            data_prefix=data_root))
    
    # optimizer
    optimizer = dict(
        # Config used to build optimizer, support (1). All the optimizers in PyTorch
        # whose arguments are also the same as those in PyTorch. (2). Custom optimizers
        # which are built on `constructor`, referring to "tutorials/5_new_modules.md"
        # for implementation.
        type='Adam',  # Type of optimizer, refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/optimizer/default_constructor.py#L13 for more details
        lr=0.001,  # Learning rate, see detail usages of the parameters in the documentation of PyTorch
        weight_decay=0.0001)  # Weight decay of Adam
    optimizer_config = dict(  # Config used to build the optimizer hook
        grad_clip=None)  # Most of the methods do not use gradient clip
    # learning policy
    lr_config = dict(  # Learning rate scheduler config used to register LrUpdater hook
        policy='step',  # Policy of scheduler, also support CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9
        step=7)  # Steps to decay the learning rate
    
    total_epochs = 9  # Total epochs to train the model
    checkpoint_config = dict(  # Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py for implementation
        interval=1)  # Interval to save checkpoint
    evaluation = dict(  # Config of evaluation during training
        interval=1,  # Interval to perform evaluation
        metrics=['AR@AN'])  # Metrics to be performed
    log_config = dict(  # Config to register logger hook
        interval=50,  # Interval to print the log
        hooks=[  # Hooks to be implemented during training
            dict(type='TextLoggerHook'),  # The logger used to record the training process
            # dict(type='TensorboardLoggerHook'),  # The Tensorboard logger is also supported
        ])
    
    # runtime settings
    dist_params = dict(backend='nccl')  # Parameters to setup distributed training, the port can also be set
    log_level = 'INFO'  # The level of logging
    work_dir = './work_dirs/bmn_400x100_2x8_9e_activitynet_feature/'  # Directory to save the model checkpoints and logs for the current experiments
    load_from = None  # load models as a pre-trained model from a given path. This will not resume training
    resume_from = None  # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved
    workflow = [('train', 1)]  # Workflow for runner. [('train', 1)] means there is only one workflow and the workflow named 'train' is executed once
    output_config = dict(  # Config of localization ouput
        out=f'{work_dir}/results.json',  # Path to output file
        output_format='json')  # File format of output file

Config System for Action Recognition

We incorporate modular design into our config system, which is convenient to conduct various experiments.

  • An Example of TSN

    To help the users have a basic idea of a complete config structure and the modules in an action recognition system, we make brief comments on the config of TSN as the following. For more detailed usage and alternative for per parameter in each module, please refer to the API documentation.

    # model settings
    model = dict(  # Config of the model
        type='Recognizer2D',  # Type of the recognizer
        backbone=dict(  # Dict for backbone
            type='ResNet',  # Name of the backbone
            pretrained='torchvision://resnet50',  # The url/site of the pretrained model
            depth=50,  # Depth of ResNet model
            norm_eval=False),  # Whether to set BN layers to eval mode when training
        cls_head=dict(  # Dict for classification head
            type='TSNHead',  # Name of classification head
            num_classes=400,  # Number of classes to be classified.
            in_channels=2048,  # The input channels of classification head.
            spatial_type='avg',  # Type of pooling in spatial dimension
            consensus=dict(type='AvgConsensus', dim=1),  # Config of consensus module
            dropout_ratio=0.4,  # Probability in dropout layer
            init_std=0.01), # Std value for linear layer initiation
            # model training and testing settings
            train_cfg=None,  # Config of training hyperparameters for TSN
            test_cfg=dict(average_clips=None))  # Config for testing hyperparameters for TSN.
    
    # dataset settings
    dataset_type = 'RawframeDataset'  # Type of dataset for training, validation and testing
    data_root = 'data/kinetics400/rawframes_train/'  # Root path to data for training
    data_root_val = 'data/kinetics400/rawframes_val/'  # Root path to data for validation and testing
    ann_file_train = 'data/kinetics400/kinetics400_train_list_rawframes.txt'  # Path to the annotation file for training
    ann_file_val = 'data/kinetics400/kinetics400_val_list_rawframes.txt'  # Path to the annotation file for validation
    ann_file_test = 'data/kinetics400/kinetics400_val_list_rawframes.txt'  # Path to the annotation file for testing
    img_norm_cfg = dict(  # Config of image normalization used in data pipeline
        mean=[123.675, 116.28, 103.53],  # Mean values of different channels to normalize
        std=[58.395, 57.12, 57.375],  # Std values of different channels to normalize
        to_bgr=False)  # Whether to convert channels from RGB to BGR
    
    train_pipeline = [  # List of training pipeline steps
        dict(  # Config of SampleFrames
            type='SampleFrames',  # Sample frames pipeline, sampling frames from video
            clip_len=1,  # Frames of each sampled output clip
            frame_interval=1,  # Temporal interval of adjacent sampled frames
            num_clips=3),  # Number of clips to be sampled
        dict(  # Config of RawFrameDecode
            type='RawFrameDecode'),  # Load and decode Frames pipeline, picking raw frames with given indices
        dict(  # Config of Resize
            type='Resize',  # Resize pipeline
            scale=(-1, 256)),  # The scale to resize images
        dict(  # Config of MultiScaleCrop
            type='MultiScaleCrop',  # Multi scale crop pipeline, cropping images with a list of randomly selected scales
            input_size=224,  # Input size of the network
            scales=(1, 0.875, 0.75, 0.66),  # Scales of width and height to be selected
            random_crop=False,  # Whether to randomly sample cropping bbox
            max_wh_scale_gap=1),  # Maximum gap of w and h scale levels
        dict(  # Config of Resize
            type='Resize',  # Resize pipeline
            scale=(224, 224),  # The scale to resize images
            keep_ratio=False),  # Whether to resize with changing the aspect ratio
        dict(  # Config of Flip
            type='Flip',  # Flip Pipeline
            flip_ratio=0.5),  # Probability of implementing flip
        dict(  # Config of Normalize
            type='Normalize',  # Normalize pipeline
            **img_norm_cfg),  # Config of image normalization
        dict(  # Config of FormatShape
            type='FormatShape',  # Format shape pipeline, Format final image shape to the given input_format
            input_format='NCHW'),  # Final image shape format
        dict(  # Config of Collect
            type='Collect',  # Collect pipeline that decides which keys in the data should be passed to the recognizer
            keys=['imgs', 'label'],  # Keys of input
            meta_keys=[]),  # Meta keys of input
        dict(  # Config of ToTensor
            type='ToTensor',  # Convert other types to tensor type pipeline
            keys=['imgs', 'label'])  # Keys to be converted from image to tensor
    ]
    val_pipeline = [  # List of validation pipeline steps
        dict(  # Config of SampleFrames
            type='SampleFrames',  # Sample frames pipeline, sampling frames from video
            clip_len=1,  # Frames of each sampled output clip
            frame_interval=1,  # Temporal interval of adjacent sampled frames
            num_clips=3,  # Number of clips to be sampled
            test_mode=True),  # Whether to set test mode in sampling
        dict(  # Config of RawFrameDecode
            type='RawFrameDecode'),  # Load and decode Frames pipeline, picking raw frames with given indices
        dict(  # Config of Resize
            type='Resize',  # Resize pipeline
            scale=(-1, 256)),  # The scale to resize images
        dict(  # Config of CenterCrop
            type='CenterCrop',  # Center crop pipeline, cropping the center area from images
            crop_size=224),  # The size to crop images
        dict(  # Config of Flip
            type='Flip',  # Flip pipeline
            flip_ratio=0),  # Probability of implementing flip
        dict(  # Config of Normalize
            type='Normalize',  # Normalize pipeline
            **img_norm_cfg),  # Config of image normalization
        dict(  # Config of FormatShape
            type='FormatShape',  # Format shape pipeline, Format final image shape to the given input_format
            input_format='NCHW'),  # Final image shape format
        dict(  # Config of Collect
            type='Collect',  # Collect pipeline that decides which keys in the data should be passed to the recognizer
            keys=['imgs', 'label'],  # Keys of input
            meta_keys=[]),  # Meta keys of input
        dict(  # Config of ToTensor
            type='ToTensor',  # Convert other types to tensor type pipeline
            keys=['imgs'])  # Keys to be converted from image to tensor
    ]
    test_pipeline = [  # List of testing pipeline steps
        dict(  # Config of SampleFrames
            type='SampleFrames',  # Sample frames pipeline, sampling frames from video
            clip_len=1,  # Frames of each sampled output clip
            frame_interval=1,  # Temporal interval of adjacent sampled frames
            num_clips=25,  # Number of clips to be sampled
            test_mode=True),  # Whether to set test mode in sampling
        dict(  # Config of RawFrameDecode
            type='RawFrameDecode'),  # Load and decode Frames pipeline, picking raw frames with given indices
        dict(  # Config of Resize
            type='Resize',  # Resize pipeline
            scale=(-1, 256)),  # The scale to resize images
        dict(  # Config of TenCrop
            type='TenCrop',  # Ten crop pipeline, cropping ten area from images
            crop_size=224),  # The size to crop images
        dict(  # Config of Flip
            type='Flip',  # Flip pipeline
            flip_ratio=0),  # Probability of implementing flip
        dict(  # Config of Normalize
            type='Normalize',  # Normalize pipeline
            **img_norm_cfg),  # Config of image normalization
        dict(  # Config of FormatShape
            type='FormatShape',  # Format shape pipeline, Format final image shape to the given input_format
            input_format='NCHW'),  # Final image shape format
        dict(  # Config of Collect
            type='Collect',  # Collect pipeline that decides which keys in the data should be passed to the recognizer
            keys=['imgs', 'label'],  # Keys of input
            meta_keys=[]),  # Meta keys of input
        dict(  # Config of ToTensor
            type='ToTensor',  # Convert other types to tensor type pipeline
            keys=['imgs'])  # Keys to be converted from image to tensor
    ]
    data = dict(  # Config of data
        videos_per_gpu=32,  # Batch size of each single GPU
        workers_per_gpu=4,  # Workers to pre-fetch data for each single GPU
        train_dataloader=dict(  # Additional config of train dataloader
            drop_last=True),  # Whether to drop out the last batch of data in training
        val_dataloader=dict(  # Additional config of validation dataloader
            videos_per_gpu=1),  # Batch size of each single GPU during evaluation
        test_dataloader=dict(  # Additional config of test dataloader
            videos_per_gpu=2),  # Batch size of each single GPU during testing
        train=dict(  # Training dataset config
            type=dataset_type,
            ann_file=ann_file_train,
            data_prefix=data_root,
            pipeline=train_pipeline),
        val=dict(  # Validation dataset config
            type=dataset_type,
            ann_file=ann_file_val,
            data_prefix=data_root_val,
            pipeline=val_pipeline),
        test=dict(  # Testing dataset config
            type=dataset_type,
            ann_file=ann_file_test,
            data_prefix=data_root_val,
            pipeline=test_pipeline))
    # optimizer
    optimizer = dict(
        # Config used to build optimizer, support (1). All the optimizers in PyTorch
        # whose arguments are also the same as those in PyTorch. (2). Custom optimizers
        # which are built on `constructor`, referring to "tutorials/5_new_modules.md"
        # for implementation.
        type='SGD',  # Type of optimizer, refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/optimizer/default_constructor.py#L13 for more details
        lr=0.01,  # Learning rate, see detail usages of the parameters in the documentation of PyTorch
        momentum=0.9,  # Momentum,
        weight_decay=0.0001)  # Weight decay of SGD
    optimizer_config = dict(  # Config used to build the optimizer hook
        grad_clip=dict(max_norm=40, norm_type=2))  # Use gradient clip
    # learning policy
    lr_config = dict(  # Learning rate scheduler config used to register LrUpdater hook
        policy='step',  # Policy of scheduler, also support CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9
        step=[40, 80])  # Steps to decay the learning rate
    total_epochs = 100  # Total epochs to train the model
    checkpoint_config = dict(  # Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py for implementation
        interval=5)  # Interval to save checkpoint
    evaluation = dict(  # Config of evaluation during training
        interval=5,  # Interval to perform evaluation
        metrics=['top_k_accuracy', 'mean_class_accuracy'],  # Metrics to be performed
        metric_options=dict(top_k_accuracy=dict(topk=(1, 3))), # Set top-k accuracy to 1 and 3 during validation
        save_best='top_k_accuracy')  # set `top_k_accuracy` as key indicator to save best checkpoint
    eval_config = dict(
        metric_options=dict(top_k_accuracy=dict(topk=(1, 3)))) # Set top-k accuracy to 1 and 3 during testing. You can also use `--eval top_k_accuracy` to assign evaluation metrics
    log_config = dict(  # Config to register logger hook
        interval=20,  # Interval to print the log
        hooks=[  # Hooks to be implemented during training
            dict(type='TextLoggerHook'),  # The logger used to record the training process
            # dict(type='TensorboardLoggerHook'),  # The Tensorboard logger is also supported
        ])
    
    # runtime settings
    dist_params = dict(backend='nccl')  # Parameters to setup distributed training, the port can also be set
    log_level = 'INFO'  # The level of logging
    work_dir = './work_dirs/tsn_r50_1x1x3_100e_kinetics400_rgb/'  # Directory to save the model checkpoints and logs for the current experiments
    load_from = None  # load models as a pre-trained model from a given path. This will not resume training
    resume_from = None  # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved
    workflow = [('train', 1)]  # Workflow for runner. [('train', 1)] means there is only one workflow and the workflow named 'train' is executed once

Config System for Spatio-Temporal Action Detection

We incorporate modular design into our config system, which is convenient to conduct various experiments.

  • An Example of FastRCNN

    To help the users have a basic idea of a complete config structure and the modules in a spatio-temporal action detection system, we make brief comments on the config of FastRCNN as the following. For more detailed usage and alternative for per parameter in each module, please refer to the API documentation.

    # model setting
    model = dict(  # Config of the model
        type='FastRCNN',  # Type of the detector
        backbone=dict(  # Dict for backbone
            type='ResNet3dSlowOnly',  # Name of the backbone
            depth=50, # Depth of ResNet model
            pretrained=None,   # The url/site of the pretrained model
            pretrained2d=False, # If the pretrained model is 2D
            lateral=False,  # If the backbone is with lateral connections
            num_stages=4, # Stages of ResNet model
            conv1_kernel=(1, 7, 7), # Conv1 kernel size
            conv1_stride_t=1, # Conv1 temporal stride
            pool1_stride_t=1, # Pool1 temporal stride
            spatial_strides=(1, 2, 2, 1)),  # The spatial stride for each ResNet stage
        roi_head=dict(  # Dict for roi_head
            type='AVARoIHead',  # Name of the roi_head
            bbox_roi_extractor=dict(  # Dict for bbox_roi_extractor
                type='SingleRoIExtractor3D',  # Name of the bbox_roi_extractor
                roi_layer_type='RoIAlign',  # Type of the RoI op
                output_size=8,  # Output feature size of the RoI op
                with_temporal_pool=True), # If temporal dim is pooled
            bbox_head=dict( # Dict for bbox_head
                type='BBoxHeadAVA', # Name of the bbox_head
                in_channels=2048, # Number of channels of the input feature
                num_classes=81, # Number of action classes + 1
                multilabel=True,  # If the dataset is multilabel
                dropout_ratio=0.5)),  # The dropout ratio used
        # model training and testing settings
        train_cfg=dict(  # Training config of FastRCNN
            rcnn=dict(  # Dict for rcnn training config
                assigner=dict(  # Dict for assigner
                    type='MaxIoUAssignerAVA', # Name of the assigner
                    pos_iou_thr=0.9,  # IoU threshold for positive examples, > pos_iou_thr -> positive
                    neg_iou_thr=0.9,  # IoU threshold for negative examples, < neg_iou_thr -> negative
                    min_pos_iou=0.9), # Minimum acceptable IoU for positive examples
                sampler=dict( # Dict for sample
                    type='RandomSampler', # Name of the sampler
                    num=32, # Batch Size of the sampler
                    pos_fraction=1, # Positive bbox fraction of the sampler
                    neg_pos_ub=-1,  # Upper bound of the ratio of num negative to num positive
                    add_gt_as_proposals=True), # Add gt bboxes as proposals
                pos_weight=1.0, # Loss weight of positive examples
                debug=False)), # Debug mode
        test_cfg=dict( # Testing config of FastRCNN
            rcnn=dict(  # Dict for rcnn testing config
                action_thr=0.002))) # The threshold of an action
    
    # dataset settings
    dataset_type = 'AVADataset' # Type of dataset for training, validation and testing
    data_root = 'data/ava/rawframes'  # Root path to data
    anno_root = 'data/ava/annotations'  # Root path to annotations
    
    ann_file_train = f'{anno_root}/ava_train_v2.1.csv'  # Path to the annotation file for training
    ann_file_val = f'{anno_root}/ava_val_v2.1.csv'  # Path to the annotation file for validation
    
    exclude_file_train = f'{anno_root}/ava_train_excluded_timestamps_v2.1.csv'  # Path to the exclude annotation file for training
    exclude_file_val = f'{anno_root}/ava_val_excluded_timestamps_v2.1.csv'  # Path to the exclude annotation file for validation
    
    label_file = f'{anno_root}/ava_action_list_v2.1_for_activitynet_2018.pbtxt'  # Path to the label file
    
    proposal_file_train = f'{anno_root}/ava_dense_proposals_train.FAIR.recall_93.9.pkl'  # Path to the human detection proposals for training examples
    proposal_file_val = f'{anno_root}/ava_dense_proposals_val.FAIR.recall_93.9.pkl'  # Path to the human detection proposals for validation examples
    
    img_norm_cfg = dict(  # Config of image normalization used in data pipeline
        mean=[123.675, 116.28, 103.53], # Mean values of different channels to normalize
        std=[58.395, 57.12, 57.375],   # Std values of different channels to normalize
        to_bgr=False) # Whether to convert channels from RGB to BGR
    
    train_pipeline = [  # List of training pipeline steps
        dict(  # Config of SampleFrames
            type='AVASampleFrames',  # Sample frames pipeline, sampling frames from video
            clip_len=4,  # Frames of each sampled output clip
            frame_interval=16),  # Temporal interval of adjacent sampled frames
        dict(  # Config of RawFrameDecode
            type='RawFrameDecode'),  # Load and decode Frames pipeline, picking raw frames with given indices
        dict(  # Config of RandomRescale
            type='RandomRescale',   # Randomly rescale the shortedge by a given range
            scale_range=(256, 320)),   # The shortedge size range of RandomRescale
        dict(  # Config of RandomCrop
            type='RandomCrop',   # Randomly crop a patch with the given size
            size=256),   # The size of the cropped patch
        dict(  # Config of Flip
            type='Flip',  # Flip Pipeline
            flip_ratio=0.5),  # Probability of implementing flip
        dict(  # Config of Normalize
            type='Normalize',  # Normalize pipeline
            **img_norm_cfg),  # Config of image normalization
        dict(  # Config of FormatShape
            type='FormatShape',  # Format shape pipeline, Format final image shape to the given input_format
            input_format='NCTHW',  # Final image shape format
            collapse=True),   # Collapse the dim N if N == 1
        dict(  # Config of Rename
            type='Rename',  # Rename keys
            mapping=dict(imgs='img')),  # The old name to new name mapping
        dict(  # Config of ToTensor
            type='ToTensor',  # Convert other types to tensor type pipeline
            keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']),  # Keys to be converted from image to tensor
        dict(  # Config of ToDataContainer
            type='ToDataContainer',  # Convert other types to DataContainer type pipeline
            fields=[   # Fields to convert to DataContainer
                dict(   # Dict of fields
                    key=['proposals', 'gt_bboxes', 'gt_labels'],  # Keys to Convert to DataContainer
                    stack=False)]),  # Whether to stack these tensor
        dict(  # Config of Collect
            type='Collect',  # Collect pipeline that decides which keys in the data should be passed to the detector
            keys=['img', 'proposals', 'gt_bboxes', 'gt_labels'],  # Keys of input
            meta_keys=['scores', 'entity_ids']),  # Meta keys of input
    ]
    
    val_pipeline = [  # List of validation pipeline steps
        dict(  # Config of SampleFrames
            type='AVASampleFrames',  # Sample frames pipeline, sampling frames from video
            clip_len=4,  # Frames of each sampled output clip
            frame_interval=16)  # Temporal interval of adjacent sampled frames
        dict(  # Config of RawFrameDecode
            type='RawFrameDecode'),  # Load and decode Frames pipeline, picking raw frames with given indices
        dict(  # Config of Resize
            type='Resize',  # Resize pipeline
            scale=(-1, 256)),  # The scale to resize images
        dict(  # Config of Normalize
            type='Normalize',  # Normalize pipeline
            **img_norm_cfg),  # Config of image normalization
        dict(  # Config of FormatShape
            type='FormatShape',  # Format shape pipeline, Format final image shape to the given input_format
            input_format='NCTHW',  # Final image shape format
            collapse=True),   # Collapse the dim N if N == 1
        dict(  # Config of Rename
            type='Rename',  # Rename keys
            mapping=dict(imgs='img')),  # The old name to new name mapping
        dict(  # Config of ToTensor
            type='ToTensor',  # Convert other types to tensor type pipeline
            keys=['img', 'proposals']),  # Keys to be converted from image to tensor
        dict(  # Config of ToDataContainer
            type='ToDataContainer',  # Convert other types to DataContainer type pipeline
            fields=[   # Fields to convert to DataContainer
                dict(   # Dict of fields
                    key=['proposals'],  # Keys to Convert to DataContainer
                    stack=False)]),  # Whether to stack these tensor
        dict(  # Config of Collect
            type='Collect',  # Collect pipeline that decides which keys in the data should be passed to the detector
            keys=['img', 'proposals'],  # Keys of input
            meta_keys=['scores', 'entity_ids'],  # Meta keys of input
            nested=True)  # Whether to wrap the data in a nested list
    ]
    
    data = dict(  # Config of data
        videos_per_gpu=16,  # Batch size of each single GPU
        workers_per_gpu=4,  # Workers to pre-fetch data for each single GPU
        val_dataloader=dict(   # Additional config of validation dataloader
            videos_per_gpu=1),  # Batch size of each single GPU during evaluation
        train=dict(   # Training dataset config
            type=dataset_type,
            ann_file=ann_file_train,
            exclude_file=exclude_file_train,
            pipeline=train_pipeline,
            label_file=label_file,
            proposal_file=proposal_file_train,
            person_det_score_thr=0.9,
            data_prefix=data_root),
        val=dict(     # Validation dataset config
            type=dataset_type,
            ann_file=ann_file_val,
            exclude_file=exclude_file_val,
            pipeline=val_pipeline,
            label_file=label_file,
            proposal_file=proposal_file_val,
            person_det_score_thr=0.9,
            data_prefix=data_root))
    data['test'] = data['val']    # Set test_dataset as val_dataset
    
    # optimizer
    optimizer = dict(
        # Config used to build optimizer, support (1). All the optimizers in PyTorch
        # whose arguments are also the same as those in PyTorch. (2). Custom optimizers
        # which are built on `constructor`, referring to "tutorials/5_new_modules.md"
        # for implementation.
        type='SGD',  # Type of optimizer, refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/optimizer/default_constructor.py#L13 for more details
        lr=0.2,  # Learning rate, see detail usages of the parameters in the documentation of PyTorch (for 8gpu)
        momentum=0.9,  # Momentum,
        weight_decay=0.00001)  # Weight decay of SGD
    
    optimizer_config = dict(  # Config used to build the optimizer hook
        grad_clip=dict(max_norm=40, norm_type=2))   # Use gradient clip
    
    lr_config = dict(  # Learning rate scheduler config used to register LrUpdater hook
        policy='step',  # Policy of scheduler, also support CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9
        step=[40, 80],  # Steps to decay the learning rate
        warmup='linear',  # Warmup strategy
        warmup_by_epoch=True,  # Warmup_iters indicates iter num or epoch num
        warmup_iters=5,   # Number of iters or epochs for warmup
        warmup_ratio=0.1)   # The initial learning rate is warmup_ratio * lr
    
    total_epochs = 20  # Total epochs to train the model
    checkpoint_config = dict(  # Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py for implementation
        interval=1)   # Interval to save checkpoint
    workflow = [('train', 1)]   # Workflow for runner. [('train', 1)] means there is only one workflow and the workflow named 'train' is executed once
    evaluation = dict(  # Config of evaluation during training
        interval=1, save_best='[email protected]')  # Interval to perform evaluation and the key for saving best checkpoint
    log_config = dict(  # Config to register logger hook
        interval=20,  # Interval to print the log
        hooks=[  # Hooks to be implemented during training
            dict(type='TextLoggerHook'),  # The logger used to record the training process
        ])
    
    # runtime settings
    dist_params = dict(backend='nccl')  # Parameters to setup distributed training, the port can also be set
    log_level = 'INFO'  # The level of logging
    work_dir = ('./work_dirs/ava/'  # Directory to save the model checkpoints and logs for the current experiments
                'slowonly_kinetics_pretrained_r50_4x16x1_20e_ava_rgb')
    load_from = ('https://download.openmmlab.com/mmaction/recognition/slowonly/'  # load models as a pre-trained model from a given path. This will not resume training
                 'slowonly_r50_4x16x1_256e_kinetics400_rgb/'
                 'slowonly_r50_4x16x1_256e_kinetics400_rgb_20200704-a69556c6.pth')
    resume_from = None  # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved

FAQ

Use intermediate variables in configs

Some intermediate variables are used in the config files, like train_pipeline/val_pipeline/test_pipeline, ann_file_train/ann_file_val/ann_file_test, img_norm_cfg etc.

For Example, we would like to first define train_pipeline/val_pipeline/test_pipeline and pass them into data. Thus, train_pipeline/val_pipeline/test_pipeline are intermediate variable.

we also define ann_file_train/ann_file_val/ann_file_test and data_root/data_root_val to provide data pipeline some basic information.

In addition, we use img_norm_cfg as intermediate variables to construct data augmentation components.

...
dataset_type = 'RawframeDataset'
data_root = 'data/kinetics400/rawframes_train'
data_root_val = 'data/kinetics400/rawframes_val'
ann_file_train = 'data/kinetics400/kinetics400_train_list_rawframes.txt'
ann_file_val = 'data/kinetics400/kinetics400_val_list_rawframes.txt'
ann_file_test = 'data/kinetics400/kinetics400_val_list_rawframes.txt'

img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False)

train_pipeline = [
    dict(type='SampleFrames', clip_len=32, frame_interval=2, num_clips=1),
    dict(type='RawFrameDecode'),
    dict(type='Resize', scale=(-1, 256)),
    dict(
        type='MultiScaleCrop',
        input_size=224,
        scales=(1, 0.8),
        random_crop=False,
        max_wh_scale_gap=0),
    dict(type='Resize', scale=(224, 224), keep_ratio=False),
    dict(type='Flip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='FormatShape', input_format='NCTHW'),
    dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
    dict(type='ToTensor', keys=['imgs', 'label'])
]
val_pipeline = [
    dict(
        type='SampleFrames',
        clip_len=32,
        frame_interval=2,
        num_clips=1,
        test_mode=True),
    dict(type='RawFrameDecode'),
    dict(type='Resize', scale=(-1, 256)),
    dict(type='CenterCrop', crop_size=224),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='FormatShape', input_format='NCTHW'),
    dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
    dict(type='ToTensor', keys=['imgs'])
]
test_pipeline = [
    dict(
        type='SampleFrames',
        clip_len=32,
        frame_interval=2,
        num_clips=10,
        test_mode=True),
    dict(type='RawFrameDecode'),
    dict(type='Resize', scale=(-1, 256)),
    dict(type='ThreeCrop', crop_size=256),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='FormatShape', input_format='NCTHW'),
    dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
    dict(type='ToTensor', keys=['imgs'])
]

data = dict(
    videos_per_gpu=8,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        ann_file=ann_file_train,
        data_prefix=data_root,
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        ann_file=ann_file_val,
        data_prefix=data_root_val,
        pipeline=val_pipeline),
    test=dict(
        type=dataset_type,
        ann_file=ann_file_val,
        data_prefix=data_root_val,
        pipeline=test_pipeline))