Skip to content

Latest commit

 

History

History
80 lines (55 loc) · 4.58 KB

File metadata and controls

80 lines (55 loc) · 4.58 KB

ResNet for Audio

Introduction

@article{xiao2020audiovisual,
  title={Audiovisual SlowFast Networks for Video Recognition},
  author={Xiao, Fanyi and Lee, Yong Jae and Grauman, Kristen and Malik, Jitendra and Feichtenhofer, Christoph},
  journal={arXiv preprint arXiv:2001.08740},
  year={2020}
}

Model Zoo

Kinetics-400

config n_fft gpus backbone pretrain top1 acc/delta top5 acc/delta inference_time(video/s) gpu_mem(M) ckpt log json
tsn_r18_64x1x1_100e_kinetics400_audio_feature 1024 8 ResNet18 None 19.7 35.75 x 1897 ckpt log json
tsn_r18_64x1x1_100e_kinetics400_audio_feature + tsn_r50_video_320p_1x1x3_100e_kinetics400_rgb 1024 8 ResNet(18+50) None 71.50(+0.39) 90.18(+0.14) x x x x x

Notes:

  1. The gpus indicates the number of gpus we used to get the checkpoint. It is noteworthy that the configs we provide are used for 8 gpus as default. According to the Linear Scaling Rule, you may set the learning rate proportional to the batch size if you use different GPUs or videos per GPU, e.g., lr=0.01 for 4 GPUs x 2 video/gpu and lr=0.08 for 16 GPUs x 4 video/gpu.
  2. The inference_time is got by this benchmark script, where we use the sampling frames strategy of the test setting and only care about the model inference time, not including the IO time and pre-processing time. For each setting, we use 1 gpu and set batch size (videos per gpu) to 1 to calculate the inference time.
  3. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-Validation. The corresponding data list (each line is of the format 'video_id, num_frames, label_index') and the label map are also available.

For more details on data preparation, you can refer to Prepare audio in Data Preparation.

Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train ResNet model on Kinetics-400 audio dataset in a deterministic option with periodic validation.

python tools/train.py configs/audio_recognition/tsn_r50_64x1x1_100e_kinetics400_audio_feature.py \
    --work-dir work_dirs/tsn_r50_64x1x1_100e_kinetics400_audio_feature \
    --validate --seed 0 --deterministic

For more details, you can refer to Training setting part in getting_started.

Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test ResNet model on Kinetics-400 audio dataset and dump the result to a json file.

python tools/test.py configs/audio_recognition/tsn_r50_64x1x1_100e_kinetics400_audio_feature.py \
    checkpoints/SOME_CHECKPOINT.pth --eval top_k_accuracy mean_class_accuracy \
    --out result.json

For more details, you can refer to Test a dataset part in getting_started.

Fusion

For multi-modality fusion, you can use the simple script, the standard usage is:

python tools/analysis/report_accuracy.py --scores ${AUDIO_RESULT_PKL} ${VISUAL_RESULT_PKL} --datalist data/kinetics400/kinetics400_val_list_rawframes.txt --coefficient 1 1
  • AUDIO_RESULT_PKL: The saved output file of tools/test.py by the argument --out.
  • VISUAL_RESULT_PKL: The saved output file of tools/test.py by the argument --out.