@misc{feichtenhofer2020x3d,
title={X3D: Expanding Architectures for Efficient Video Recognition},
author={Christoph Feichtenhofer},
year={2020},
eprint={2004.04730},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
config | resolution | backbone | top1 10-view | top1 30-view | reference top1 10-view | reference top1 30-view | ckpt |
---|---|---|---|---|---|---|---|
x3d_s_13x6x1_facebook_kinetics400_rgb | short-side 320 | X3D_S | 72.7 | 73.2 | 73.1 [SlowFast] | 73.5 [SlowFast] | ckpt[1] |
x3d_m_16x5x1_facebook_kinetics400_rgb | short-side 320 | X3D_M | 75.0 | 75.6 | 75.1 [SlowFast] | 76.2 [SlowFast] | ckpt[1] |
[1] The models are ported from the repo SlowFast and tested on our data. Currently, we only support the testing of X3D models, training will be available soon.
Notes:
- The values in columns named after "reference" are the results got by testing the checkpoint released on the original repo and codes, using the same dataset with ours.
- The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-Validation. The corresponding data list (each line is of the format 'video_id, num_frames, label_index') and the label map are also available.
For more details on data preparation, you can refer to Kinetics400 in Data Preparation.
You can use the following command to test a model.
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
Example: test X3D model on Kinetics-400 dataset and dump the result to a json file.
python tools/test.py configs/recognition/x3d/x3d_s_13x6x1_facebook_kinetics400_rgb.py \
checkpoints/SOME_CHECKPOINT.pth --eval top_k_accuracy mean_class_accuracy \
--out result.json --average-clips prob
For more details, you can refer to Test a dataset part in getting_started.