@article{shao2020temporal,
title={Temporal Interlacing Network},
author={Hao Shao and Shengju Qian and Yu Liu},
year={2020},
journal={AAAI},
}
config | resolution | gpus | backbone | pretrain | top1 acc | top5 acc | reference top1 acc | reference top5 acc | gpu_mem(M) | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|---|---|---|
tin_r50_1x1x8_40e_sthv1_rgb | height 100 | 8x4 | ResNet50 | ImageNet | 44.25 | 73.94 | 44.04 | 72.72 | 6181 | ckpt | log | json |
config | resolution | gpus | backbone | pretrain | top1 acc | top5 acc | reference top1 acc | reference top5 acc | gpu_mem(M) | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|---|---|---|
tin_r50_1x1x8_40e_sthv2_rgb | height 240 | 8x4 | ResNet50 | ImageNet | 56.70 | 83.62 | 56.48 | 83.45 | 6185 | ckpt | log | json |
config | resolution | gpus | backbone | pretrain | top1 acc | top5 acc | gpu_mem(M) | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|---|
tin_tsm_finetune_r50_1x1x8_50e_kinetics400_rgb | short-side 256 | 8x4 | ResNet50 | TSM-Kinetics400 | 70.89 | 89.89 | 6187 | ckpt | log | json |
Here, we use finetune
to indicate that we use TSM model trained on Kinetics-400 to finetune the TIN model on Kinetics-400.
Notes:
- The reference topk acc are got by training the original repo #1aacd0c with no AverageMeter issue. The AverageMeter issue will lead to incorrect performance, so we fix it before running.
- The gpus indicates the number of gpu we used to get the checkpoint. It is noteworthy that the configs we provide are used for 8 gpus as default. According to the Linear Scaling Rule, you may set the learning rate proportional to the batch size if you use different GPUs or videos per GPU, e.g., lr=0.01 for 4 GPUs x 2 video/gpu and lr=0.08 for 16 GPUs x 4 video/gpu.
- The inference_time is got by this benchmark script, where we use the sampling frames strategy of the test setting and only care about the model inference time, not including the IO time and pre-processing time. For each setting, we use 1 gpu and set batch size (videos per gpu) to 1 to calculate the inference time.
- The values in columns named after "reference" are the results got by training on the original repo, using the same model settings.
- The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at Kinetics400-Validation. The corresponding data list (each line is of the format 'video_id, num_frames, label_index') and the label map are also available.
For more details on data preparation, you can refer to Kinetics400, Something-Something V1 and Something-Something V2 in Data Preparation.
You can use the following command to train a model.
python tools/train.py ${CONFIG_FILE} [optional arguments]
Example: train TIN model on Something-Something V1 dataset in a deterministic option with periodic validation.
python tools/train.py configs/recognition/tin/tin_r50_1x1x8_40e_sthv1_rgb.py \
--work-dir work_dirs/tin_r50_1x1x8_40e_sthv1_rgb \
--validate --seed 0 --deterministic
For more details, you can refer to Training setting part in getting_started.
You can use the following command to test a model.
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
Example: test TIN model on Something-Something V1 dataset and dump the result to a json file.
python tools/test.py configs/recognition/tin/tin_r50_1x1x8_40e_sthv1_rgb.py \
checkpoints/SOME_CHECKPOINT.pth --eval top_k_accuracy mean_class_accuracy \
--out result.json
For more details, you can refer to Test a dataset part in getting_started.