-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVGG.py
61 lines (50 loc) · 2.31 KB
/
VGG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch.nn as nn
class VGGNet(nn.Module):
def __init__(self, block_nums, num_classes):
super(VGGNet, self).__init__()
self.stage1 = self._make_layers(in_channels=3, out_channels=64, block_num=block_nums[0])
self.stage2 = self._make_layers(in_channels=64, out_channels=128, block_num=block_nums[1])
self.stage3 = self._make_layers(in_channels=128, out_channels=256, block_num=block_nums[2])
self.stage4 = self._make_layers(in_channels=256, out_channels=512, block_num=block_nums[3])
self.stage5 = self._make_layers(in_channels=512, out_channels=512, block_num=block_nums[4])
self.classifier = nn.Sequential(
nn.Linear(in_features=512, out_features=4096),
nn.Dropout(p=0.2),
nn.Linear(in_features=4096, out_features=4096),
nn.Dropout(p=0.2),
nn.Linear(in_features=4096, out_features=num_classes)
)
self._init_params()
def _make_layers(self, in_channels, out_channels, block_num):
layers = [Conv3x3BNReLU(in_channels, out_channels)]
for i in range(1, block_num):
layers.append(Conv3x3BNReLU(out_channels, out_channels))
layers.append(nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=False))
return nn.Sequential(*layers)
def _init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.stage5(x)
features = x.view(x.size(0), -1)
out = self.classifier(features)
return out
def Conv3x3BNReLU(in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU6(inplace=True)
)
def create_VGG(model_type, num_classes):
if model_type == 'VGG16':
return VGGNet([2, 2, 3, 3, 3], num_classes)
elif model_type == 'VGG19':
return VGGNet([2, 2, 4, 4, 4], num_classes)