-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathpoint_cloud_seg.py
52 lines (50 loc) · 1.82 KB
/
point_cloud_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import sys
import os
import numpy as np
import helper
from sklearn import cluster, mixture
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from itertools import cycle, islice
def SegmentPointCloud(data_file, seg_num, seg_file_prefix, visualize=False):
# Load point cloud data from file.
points = helper.LoadDataFile(data_file)
if visualize:
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(points[:, 0], points[:, 1], points[:, 2], c = 'r')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_aspect('equal')
plt.show()
# Clustering.
cluster_result = cluster.AgglomerativeClustering(n_clusters = seg_num)
cluster_result.fit(points)
labels = cluster_result.labels_.astype(np.int)
# Display the segmentation results.
if visualize:
colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a',
'#f781bf', '#a65628', '#984ea3', '#999999', '#e41a1c', '#dede00',
'#000000']), int(max(labels) + 1))))
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(points[:, 0], points[:, 1], points[:, 2], color = colors[labels])
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_aspect('equal')
plt.show()
# Save all segmentation results into file. The file names will be:
# seg_file_prefix_0.data, seg_file_prefix_1.data, ...
for i in range(seg_num):
seg_file_name = seg_file_prefix + '_' + str(i) + '.data'
seg_points = points[np.array(labels)==i, :]
helper.SaveDataFile(seg_file_name, seg_points)
if __name__ == '__main__':
# Usage: python3 point_cloud_seg.py <data_file> <seg_num> <seg_file_prefix> <visualize>
data_file = sys.argv[1]
seg_num = int(sys.argv[2])
seg_file_prefix = sys.argv[3]
visualize = sys.argv[4] == 'True'
SegmentPointCloud(data_file, seg_num, seg_file_prefix, visualize)