-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvalidate.py
executable file
·57 lines (49 loc) · 1.93 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import tensorflow as tf
import numpy as np
import time, argparse
from PIL import Image
from data import create_image_dataset
from model import create_model
if __name__ == "__main__":
start = time.time()
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=4, type=int)
parser.add_argument("--validate_path", type=str, default="./data/ssepi")
parser.add_argument("--save_path", type=str, default="./data/rec_dsepi")
parser.add_argument("--tensorboard_path", type=str, default="./tensorboard")
parser.add_argument("--shearlet_system_path", type=str, default="./model/st_127_127_4.mat")
args = parser.parse_args()
# setup logging
tf.logging.set_verbosity(tf.logging.INFO)
dataset_params = {
"validate_path": args.validate_path,
"save_path": args.save_path,
}
def validate_fn():
dataset_eval = create_image_dataset(train=False, params=dataset_params).batch(args.batch_size)
eval_it = dataset_eval.make_one_shot_iterator()
return eval_it.get_next()
estimator = tf.estimator.Estimator(
model_fn=create_model,
params={
"batch_size": args.batch_size,
"tensorboard_dir": args.tensorboard_path,
"shearlet_system_path": args.shearlet_system_path,
"num_output_channels": 3,
"height": 128,
"width": 608,
"alpha": 2,
"niter": 30,
"thmax": 2,
"thmin": 0.02
},
config=tf.estimator.RunConfig(
model_dir=args.tensorboard_path,
)
)
predictions = estimator.predict(input_fn=validate_fn)
for i, pred_dict in enumerate(predictions):
save_name, im_rec = pred_dict["save_name"].decode("utf-8"), pred_dict["image"]
Image.fromarray(im_rec).save(save_name)
print("Image saved in", save_name)
print('Required time: {:.3f} s'.format(time.time() - start) )