We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
With current version setting (i.e., latest sklearn), the following code:
pca = GroupPCA(groups=group_indices, n_components=0.95) gpca = gpca.fit(X_train) groups_pca = gpca.groups_out_ X_train = gpca.transform(X_train) model = make_afq_regressor_pipeline( imputer_kwargs={"strategy": "median"}, use_cv_estimator=True, scaler="standard", groups=groups_pca, verbose=0, pipeline_verbosity=False, tuning_strategy="bayes", cv=3, n_bayes_points=9, n_jobs=28, l1_ratio=[0.0, 1.0], eps=5e-2, n_alphas=100, ) model.fit(X_train, y_train)
Raises:
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[40], line 1 ----> 1 model.fit(X_train, y_train) File ~/miniconda3/envs/age_trt/lib/python3.10/site-packages/sklearn/pipeline.py:405, in Pipeline.fit(self, X, y, **fit_params) 403 if self._final_estimator != "passthrough": 404 fit_params_last_step = fit_params_steps[self.steps[-1][0]] --> 405 self._final_estimator.fit(Xt, y, **fit_params_last_step) 407 return self File ~/miniconda3/envs/age_trt/lib/python3.10/site-packages/groupyr/sgl.py:1024, in SGLCV.fit(self, X, y) 1022 n_l1_ratio = len(l1_ratios) 1023 if alphas is None: -> 1024 alphas = [ 1025 _alpha_grid( 1026 X=X, 1027 y=y, 1028 groups=groups, 1029 scale_l2_by=self.scale_l2_by, 1030 l1_ratio=l1_ratio, 1031 fit_intercept=self.fit_intercept, 1032 eps=self.eps, 1033 n_alphas=self.n_alphas, 1034 normalize=self.normalize, 1035 copy_X=self.copy_X, 1036 ) 1037 for l1_ratio in l1_ratios 1038 ] 1039 else: 1040 # Making sure alphas is properly ordered. 1041 alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1)) File ~/miniconda3/envs/age_trt/lib/python3.10/site-packages/groupyr/sgl.py:1025, in <listcomp>(.0) 1022 n_l1_ratio = len(l1_ratios) 1023 if alphas is None: 1024 alphas = [ -> 1025 _alpha_grid( 1026 X=X, 1027 y=y, 1028 groups=groups, 1029 scale_l2_by=self.scale_l2_by, 1030 l1_ratio=l1_ratio, 1031 fit_intercept=self.fit_intercept, 1032 eps=self.eps, 1033 n_alphas=self.n_alphas, 1034 normalize=self.normalize, 1035 copy_X=self.copy_X, 1036 ) 1037 for l1_ratio in l1_ratios 1038 ] 1039 else: 1040 # Making sure alphas is properly ordered. 1041 alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1)) File ~/miniconda3/envs/age_trt/lib/python3.10/site-packages/groupyr/sgl.py:233, in _alpha_grid(X, y, Xy, groups, scale_l2_by, l1_ratio, fit_intercept, eps, n_alphas, normalize, copy_X, model) 166 """Compute the grid of alpha values for elastic net parameter search. 167 168 Parameters (...) 230 for classification. 231 """ 232 if l1_ratio == 1.0: --> 233 return _lasso_alpha_grid( 234 X=X, 235 y=y, 236 Xy=Xy, 237 l1_ratio=l1_ratio, 238 fit_intercept=fit_intercept, 239 eps=eps, 240 n_alphas=n_alphas, 241 normalize=normalize, 242 copy_X=copy_X, 243 ) 245 n_samples = len(y) 246 if Xy is None: TypeError: _alpha_grid() got an unexpected keyword argument 'normalize'
But if I roll back to sklearn==1.0 I no longer get that error.
sklearn==1.0
Might be related to scikit-learn/scikit-learn#24391
The text was updated successfully, but these errors were encountered:
No branches or pull requests
With current version setting (i.e., latest sklearn), the following code:
Raises:
But if I roll back to
sklearn==1.0
I no longer get that error.Might be related to scikit-learn/scikit-learn#24391
The text was updated successfully, but these errors were encountered: