-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
67 lines (42 loc) · 1.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import numpy as np
import cv2
def train(dataloader, model, loss_fn, optimizer,device):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# x_numpy = X[0].cpu().numpy()
# x_numpy = np.transpose(x_numpy,(1,2,0))
# plt.imshow(x_numpy)
# plt.show()
pred = model(X)
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn,device):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
def modelTrain(epochs,train_loader,test_loader,model,loss_fn,opt,device,save_file):
# in_shape = (bs,3,28,28)
for t in range(epochs):
print(f"Epoch {t + 1}\n-------------------------------")
train(train_loader, model, loss_fn, opt,device)
test(test_loader, model, loss_fn,device)
torch.save(model.state_dict(), f'{save_file}.pt')
print("完成!")