-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path20_Printing_LCS.cpp
54 lines (47 loc) · 1.22 KB
/
20_Printing_LCS.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// Notes:- https://www.geeksforgeeks.org/printing-longest-common-subsequence/
// tricky
#include <bits/stdc++.h>
using namespace std;
string LCS(string X, string Y, int n, int m) {
int dp[n + 1][m + 1];
// base case of recursion --> for initialization of dp - matrix
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= m; j++) {
if (i == 0 || j == 0) {
dp[i][j] = 0;
}
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (X[i - 1] == Y[j - 1]) { // when last character is same
dp[i][j] = 1 + dp[i - 1][j - 1];
} else { // when last character is not same -> pick max
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
}
}
}
int i = n, j = m;
string lcs = ""; // store character when it is equal in the table
while (i > 0 && j > 0) {
if (X[i - 1] == Y[j - 1]) {
lcs += X[i - 1]; // insert in string
i--, j--;
}
else {
if (dp[i][j - 1] > dp[i - 1][j]) {
j--;
} else {
i--;
}
}
}
reverse(lcs.begin(), lcs.end()); // at last reverse the string to get LCS
return lcs;
}
signed main() {
string X, Y; cin >> X >> Y;
int n = X.length(), m = Y.length();
cout << LCS(X, Y, n, m) << endl;
return 0;
}