-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path18_LCS_LeetCode.cpp
82 lines (67 loc) · 2.13 KB
/
18_LCS_LeetCode.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// Question Link :- https://leetcode.com/problems/longest-common-subsequence
// Longest Common Subsequence
// RECURSION (give TLE)
int longestCommonSubsequence(string a, string b, int n, int m) {
// using recursion only
if (n == 0 || m == 0) {
return 0;
}
if (a[n - 1] == b[m - 1]) {
return 1 + longestCommonSubsequence(a, b, n - 1, m - 1);
}
return max(longestCommonSubsequence(a, b, n - 1, m), longestCommonSubsequence(a, b, n, m - 1));
}
// MEMOIZATION (giving TLE to 1 last testcase)
class Solution {
public:
int LCS(string text1, string text2, int n, int m, vector<vector<int>> &t) {
if (n == 0 || m == 0) {
return 0;
}
if (t[n][m] != -1) {
return t[n][m];
}
if (text1[n - 1] == text2[m - 1]) {
t[n][m] = 1 + LCS(text1, text2, n - 1, m - 1, t);
} else {
t[n][m] = max(LCS(text1, text2, n - 1, m, t), LCS(text1, text2, n, m - 1, t));
}
return t[n][m];
}
int longestCommonSubsequence(string text1, string text2) {
int n = text1.size();
int m = text2.size();
vector<vector<int>> t(n+1, vector<int>(m+1, -1));
return LCS(text1, text2, n, m, t);
}
};
// TABULATION :
// T.C = O(n*m)
// S.C = O(n*m)
class Solution {
public:
int longestCommonSubsequence(string X, string Y) {
int n = X.size();
int m = Y.size();
int dp[n + 1][m + 1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= m; j++) {
if (i == 0 || j == 0) {
dp[i][j] = 0;
}
}
}
// choise diagram is used to fill rest of the matrix
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (X[i - 1] == Y[j - 1]) { // when last character is same
dp[i][j] = 1 + dp[i - 1][j - 1];
}
else { // when last character is not same -> pick max
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
}
}
}
return dp[n][m];
}
};