-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path12_RodCutting_Gfg_problem.cpp
52 lines (45 loc) · 1.2 KB
/
12_RodCutting_Gfg_problem.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
// Question Link :- https://www.geeksforgeeks.org/problems/rod-cutting0840/1
// Rod Cutting
// T.C = O(N^2)
// S.C = O(N)
// Approach - 1
class Solution{
public:
int cutRod(vector<int> &price) {
int n = price.size();
int len[n];
for(int i=0;i<n;i++) {
len[i] = i + 1;
}
// int t[n+1][n+1];
vector<vector<int>> t(n + 1, vector<int>(n + 1, 0));
for(int i=0; i<n+1; i++){
t[i][0] = 0;
t[0][i] = 1;
}
for(int i=1; i<n+1; i++) {
for(int j=1; j<n+1; j++) {
if(len[i-1] <= j) {
t[i][j] = max(price[i-1] + t[i][j-len[i-1]], t[i-1][j]);
} else {
t[i][j] = t[i-1][j];
}
}
}
return t[n][n];
}
};
// Approach - 2
class Solution{
public:
int cutRod(vector<int> &price) {
int n = price.size();
vector<int> dp(n+1, 0);
for(int i=1; i<=n; i++) {
for(int j=i; j<=n; j++) {
dp[j] = max(dp[j], dp[j-i] + price[i-1]);
}
}
return dp[n];
}
};