-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenerate_selfplay_data.py
532 lines (473 loc) · 22.3 KB
/
generate_selfplay_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
"""
This file deals with the generation of large scale self-play data. It turns out that I am facing
the same problem that Deepmind faced which is that good value prediction is hard and supervised
training collapses on ~0.8 (MSE of entire dataset and 0.). This is why they included the value
head in self play games and this is what I am going to do.
Jesus Christ Jayanti ki Shubhkamnaye!
25.12.2020 - @yashbonde
"""
import re
import os
import json
import math
from sys import version
import boto3
import elote
import pickle
import tarfile
import numpy as np
from uuid import uuid4
from tqdm import trange
from types import SimpleNamespace
from argparse import ArgumentParser
from game import self_play_one_game, verbose_print
from model import ModelConfig, BetaChess, FullDatasetPreLoaded, configure_optimizers, set_seed
import torch
import torch.nn.functional as F
from torch.utils.data.dataloader import DataLoader
# assign the global bucket
BUCKET_NAME = "chess-lm-bucket"
BUCKET = boto3.resource("s3").Bucket(BUCKET_NAME)
FILES_ON_AWS = [obj.key for obj in BUCKET.objects.all()]
LOCAL = bool(float(os.getenv("LOCAL", False)))
class SelfPlayTrainer:
def __init__(self, config, init_model, device):
self.config = config
self.device = device
self.best_model = None # best model till now
# get AdamW optimiser for this model
self.optimizer = configure_optimizers(init_model, config)
print("Currently the system will only use a GPT-3 style scheduler")
self.scheduler = None
self.processed_tokens = 0 # number of tokens processed till now
self.ggs = 0 # all the global steps, not just the local ones
def save_checkpoint(self, ckpt_path = None, model = None):
raw_model = model.module if hasattr(model, "module") else model
ckpt_path = ckpt_path if ckpt_path is not None else self.config.ckpt_path
print(f"Saving Model at {ckpt_path}")
torch.save(raw_model.state_dict(), ckpt_path)
def train(self, lms, results, model):
"""train a model on the latest data from buffer
the buffer is a very long list of <BufferMovePoint> objects
"""
model.train()
config = self.config
model_config = model.module.config if hasattr(model, "module") else model.config
# step 1: shape the buffer
train_data = FullDatasetPreLoaded(lms, results, m2id = None)
num_batches = len(train_data) // model_config.n_ctx + int(len(train_data) % config.batch_size != 0)
print(len(train_data), num_batches)
pbar_train = trange(num_batches, ncols=100)
dl_train = DataLoader(dataset=train_data, pin_memory=True, batch_size=config.batch_size, shuffle=train_data.shuffle)
prev_train_loss = 100000 # what was the training loss in previous testing cycle
no_loss_steps = 0 # no of steps since there was devrease in the loss
break_training = False
train_losses = [-1]
train_acc = [-1]
for gs, d in zip(pbar_train, dl_train):
# total steps is now the primary iteration method
d = {k:v.to(self.device) for k,v in d.items()}
pbar_train.set_description(f"[TRAIN] GGS:{self.ggs}, GS: {gs}, Loss: {round(train_losses[-1], 5)}")
# get model results
(policy, values, loss) = model(loss=True, **d)
loss_total = loss[0].mean() # gather
if not isinstance(loss[1], int):
loss_policy = loss[1].mean().item() # gather
else:
loss_policy = -1
loss_value = loss[2].mean().item() # gather
train_losses.append(loss_total.item())
# calculate move accuracy
move_acc = 0
if policy is not None:
policy = F.softmax(policy[:,:-1,:], dim = -1).contiguous().view(-1)
policy = torch.argmax(policy, dim=-1)
targets = d["input_ids"][:, 1:].contiguous().view(-1)
move_acc = sum(targets == policy).item()
move_acc /= targets.size(0)
train_acc.append(move_acc)
log_dict = {
"loss_total": loss_total,
"loss_policy": loss_policy,
"loss_value": loss_value,
"move_acc": move_acc
}
# backprop
loss_total.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_norm_clip)
self.optimizer.step()
if self.scheduler is not None and self.scheduler != "GPT3":
last_lr = self.scheduler.get_last_lr()[0]
log_dict.update({"lr": last_lr})
self.scheduler.step()
# ------------- LR SCHEDULING
elif self.scheduler == "GPT3":
# update learning rate
self.processed_tokens += d["input_ids"].size(0) * model_config.n_ctx # batch_size * number of tokens in each sequence
if self.processed_tokens < config.warmup_tokens:
# linear warmup
lr_mult = float(self.processed_tokens) / float(max(1, config.warmup_tokens))
else:
# cosine learning rate decay
progress = float(self.processed_tokens - config.warmup_tokens) / float(max(1, config.final_tokens - config.warmup_tokens))
lr_mult = max(0.1, 0.5 * (1.0 + math.cos(math.pi * progress)))
lr = config.lr * lr_mult
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
log_dict.update({"lr": lr})
# ------------- LR SCHEDULING
if gs and gs % config.save_every == 0:
cp = config.ckpt_path.replace(".pt", f"_self_{self.ggs}.pt")
self.save_checkpoint(cp, model)
# training loops end, save final checkpoint file and update ggs
self.ggs += gs # update
print("Train End Saving")
cp = config.ckpt_path.replace(".pt", f"_self_{self.ggs}.pt")
self.save_checkpoint(cp, model)
class SelfPlayTrainerConfig:
num_epochs = 2
batch_size = 64
lr = 3e-4
betas = (0.9, 0.95)
grad_norm_clip = 1.0
num_workers = 0 # for DataLoader
ckpt_path = None
tb_path = None
patience = -1
save_every = None
scheduler = None
weight_decay = 0.1
warmup_perc = None
warmup_tokens = None
final_tokens = None
def __init__(self, **kwargs):
self.attrs = [
"num_epochs", "batch_size", "lr", "betas", "grad_norm_clip", "num_workers",
"ckpt_path", "tb_path", "patience", "save_every", "scheduler", "weight_decay",
"warmup_perc", "warmup_tokens", "final_tokens",
]
for k,v in kwargs.items():
setattr(self, k, v)
self.attrs.append(k)
if self.scheduler == "CosineAnnealingWarmRestarts":
assert hasattr(self, "t0div"), "Provide this if using CosineAnnealingWarmRestarts Scheduler"
assert hasattr(self, "tmult"), "Provide this if using CosineAnnealingWarmRestarts Scheduler"
elif self.scheduler in ["NoamDecay", "CosineDecay", "WarmupConstant"]:
assert hasattr(self, "warmup_perc"), "Provide Warmup percentage"
elif self.scheduler in ["CosineDecayJitter"]:
assert hasattr(self, "warmup_perc"), "Provide Warmup percentage"
assert hasattr(self, "jitter_scale"), "Provide jitter scale"
if self.warmup_tokens == None:
# total tokens // (batch_size * 170)
self.final_tokens = 613256130 # total size of all the tokens
self.warmup_tokens = int(self.final_tokens * self.warmup_perc)
print("Auto Setting warmup_tokens using", self.warmup_perc, "to", self.warmup_tokens)
elif self.scheduler == "GPT3":
assert self.final_tokens != None
assert self.warmup_tokens != None
def __repr__(self):
return "---- SELFPLAY TRAINER CONFIGURATION ----\n" + \
"\n".join([f"{k}\t{getattr(self, k)}" for k in list(set(self.attrs))
]) + "\n"
class SelfPlayManager:
def __init__(self, config, vocab, inv_vocab, best_model_config, trainer_config, m1_elo = 1400, m2_elo = 1400, verbose = False):
"""
when training we always train self._m2 model for ease and copy weights to self._m1 model
"""
self.config = config
self.vocab = vocab
self.inv_vocab = inv_vocab
self.verbose = verbose
# Define the players
self._m1 = BetaChess(best_model_config)
self._m2 = BetaChess(best_model_config)
# load the initial models and set to eval mode
self.device = "cpu" if not torch.cuda.is_available() else f"cuda:{torch.cuda.current_device()}"
print("Loading initial models from checkpoint:", best_model_config.model_path, "::: to device:", self.device)
self._m1.load_state_dict(torch.load(best_model_config.model_path, map_location=self.device))
self._m2.load_state_dict(torch.load(best_model_config.model_path, map_location=self.device))
self._m1.eval()
self._m2.eval()
self._m1_elo = m1_elo # initial ELO rating
self._m2_elo = m2_elo # initial ELO rating
self.model_config = self._m1.config
if "cuda" in self.device:
# now paralelize
self._m1 = torch.nn.DataParallel(self._m1).to(self.device)
self._m2 = torch.nn.DataParallel(self._m2).to(self.device)
print("Model is now CUDA!")
# load the trainer object
self.trainer = SelfPlayTrainer(trainer_config, self._m2, self.device)
# class op vars
self.buffer_name = str(uuid4())
self.buffer = []
self.game_counter = 0 # keeps a counter for all the games played till now
def upload_run(self, upto_idx = None):
"""
this function first is supposed to pickle the new dump then update the meta of
the dump.
"""
print("-"*70)
print("UPLOADING BUFFER")
print("Total Buffer Size:", len(self.buffer))
gids = [re.findall(r"\d+", x) for x in FILES_ON_AWS if "dump" in x]
max_game_id = 0
for g in gids:
max_game_id = max(max(g), max_game_id)
fname = f"./dump_{max_game_id+1}_{max_game_id+self.game_counter}.pkl"
print("Target pickle object:", fname)
with open(fname, "wb") as pkl_file:
if upto_idx:
pickle.dump(self.buffer[:upto_idx], pkl_file)
else:
pickle.dump(self.buffer, pkl_file)
tar_fname = fname[:-3] + "tar.gz"
print("Compressing to:", tar_fname)
with tarfile.open(tar_fname, "w:gz") as tar:
tar.add(fname, arcname=os.path.basename(fname))
print(f"Uploading buffer {tar_fname} ...")
if LOCAL:
print("Demo.. no upload because found envvar LOCAL = True!")
else:
BUCKET.upload_file(fname, fname) # local, cloud
print(" ... Completed Upload! Flushing local buffer")
if upto_idx is not None:
del self.buffer[:upto_idx]
# no else because the script is exitng anyways
print("-"*70)
def update_elo(self, wins, draw, losts):
# we are using BayesElo as proposed here and used in Alpha/Mu Zero for Chess
# and Shogi. Read more about it here:
# https://www.remi-coulom.fr/Bayesian-Elo/
# basically the algorithm looks like this:
# probability that A defeats B
# f(x) = 1 / (1 + 10 ** (x / 400))
# p(WhiteWins) = f(eloBlack - eloWhite - eloAdvantage + eloDraw)
# p(BlackWins) = f(eloWhite - eloBlack + eloAdvantage + eloDraw)
# p(draw) = 1 - p(WhiteWins) - p(BlackWins)
# eloAdvantage = 32.8 +/- 4
# eloDraw = 97.3 +/- 2
#
# now despite all this I do not know how to calculate this. So I am using
# package called elote, the code is borrowed from:
# https://github.com/peldszus/alpha-zero-general-lib/blob/master/src/alpha_zero_general/league.py
a = elote.EloCompetitor(self._m1_elo)
b = elote.EloCompetitor(self._m2_elo)
rating_a = a.rating
rating_b = b.rating
verbose_print("[BEFORE] Rating A:", self._m1_elo, "Rating B:", self._m2_elo, verbose=self.verbose)
verbose_print(f"wins: {wins}; draw: {draw}; losts: {losts}", verbose=self.verbose)
if wins > losts:
a.beat(b)
elif losts > wins:
b.beat(a)
else:
a.tied(b)
rating_change_a = a.rating - rating_a
rating_change_b = b.rating - rating_b
self._m1_elo = a.rating
self._m2_elo = b.rating
verbose_print("[AFTER] Rating A:", self._m1_elo, "Rating B:", self._m2_elo, verbose=self.verbose)
return rating_change_a, rating_change_b
def update_champion_model(self):
# this function updates the weights etc. from _m2 and puts them in _m1
# usually this is very tricky when using optimizer etc. but since _m1
# is guaranteed to be used for inference only we can get away with it.
verbose_print("Updating _m1 weights from _m2", verbose=self.verbose)
self._m1.load_state_dict(self._m2.state_dict())
def start(self):
config = self.config
try:
while True:
# step 1 COLLECTION: collect data by playing a tonne of games with self
verbose_print("Perform data collection by self play", verbose=self.verbose)
pbar = trange(config.n_data_collection_games)
for i in pbar:
# 50 % of the games are played with white as winning color
# and rest with black as winning color
m1 = self._m1 if i % 2 == 0 else self._m2
m2 = self._m2 if i % 2 == 0 else self._m1
win_col = "black" if i % 2 == 0 else "white" # color for m2
pbar.set_description(f"[SELF PLAY] win color: {win_col}")
_, _, moves = self_play_one_game(
m1=m1,
m2=m2,
win_col=win_col,
game_id=self.game_counter,
vocab=self.vocab,
inv_vocab=self.inv_vocab,
replay_buffer=None,
max_moves=config.max_moves,
depth=config.depth,
sims=config.sims,
_trange_moves=self.verbose,
_CUDA="cuda" in self.device
)
self.game_counter += 1
self.buffer.extend(moves)
# free up memory
if len(self.buffer) > config.buffer_size:
# keep the latest samples for training
del self.buffer[:len(self.buffer) - config.buffer_size]
# step 2 OPTIMISATION: train the model
# note that in this approach we always train the second model for convinience
# _m1 is champion and _m2 is a contestent this is why always train the
# contestent. For this we need to define the lms and results array for
# training
if config.n_data_collection_games:
buffer = np.array([(x.move_id, x.value) for x in self.buffer])
lms, results = buffer[:, 0], buffer[:, 1]
upto_idx = -(len(lms) % self.model_config.n_ctx)
lms = np.array(lms[:upto_idx]).reshape(-1, self.model_config.n_ctx)
results = np.array(results[:upto_idx]).reshape(-1, self.model_config.n_ctx)
verbose_print("lms:", lms.shape,";Results:", results.shape, verbose = self.verbose)
self.trainer.train(lms, results, self._m2)
# step 3 EVALUAION: evaluate the model with current best model
# if the contestent is better than champion
verbose_print("Perform the tournament of the models", verbose=self.verbose)
self._m1.eval()
self._m2.eval()
new_model_win = 0
num_draws = 0
pbar = trange(config.n_evaluation_games)
for i in pbar:
# in 50% of the games are played as white and 50% as black
m1 = self._m1 if i % 2 == 0 else self._m2
m2 = self._m2 if i % 2 == 0 else self._m1
win_col = "black" if i % 2 == 0 else "white" # color for m2
pbar.set_description(f"[EVLUATION] win color: {win_col}")
col, res, _ = self_play_one_game(
m1=m1,
m2=m2,
win_col=win_col,
game_id=self.game_counter,
vocab=self.vocab,
inv_vocab=self.inv_vocab,
replay_buffer=None,
max_moves=config.max_moves,
depth=config.depth,
sims=config.sims,
_trange=self.verbose,
_CUDA="cuda" in self.device
)
if res == "win" and col == win_col:
# new model won
new_model_win += 1
elif res in ["draw", "game"]:
# either the game was draw or did not finish
num_draws += 1
new_model_lost = config.n_evaluation_games - num_draws - new_model_win
s = new_model_win / config.n_evaluation_games
verbose_print("Score:", s, verbose=self.verbose)
if s >= 0.55:
self.update_champion_model()
# calculate the new ELOs
m1_change, m2_change = self.update_elo(new_model_win, num_draws, new_model_lost)
# upload the new datasets and delete local buffer till upto_idx
self.upload_run(upto_idx)
except KeyboardInterrupt:
print("Found KeyboardInterrupt, stopping training and gameplay collection")
self.upload_run()
class SelfPlayConfig:
max_moves = None
depth = None
sims = None
buffer_size = None
n_data_collection_games = None # number of games to play for collection
n_evaluation_games = None # number of games to play for evaluation
def __init__(self, **kwargs):
self.attrs = ["max_moves", "depth", "sims", "buffer_size",
"n_data_collection_games"]
for k,v in kwargs.items():
setattr(self, k, v)
self.attrs.append(k)
def __repr__(self):
return "---- SELF PLAY CONFIGURATION ----\n" + \
"\n".join([f"{k}\t{getattr(self, k)}" for k in list(set(self.attrs))
]) + "\n"
if __name__ == "__main__":
args = ArgumentParser(description="Generate self play data and store in AWS. "
"If you want to change the model configuration you want to use, please "
"this script manually. This script *assumes* that you have a working `awscli` "
"with `aws_access_key_id` and `aws_secret_access_keykeys`. Since this uses "
"boto3 it will automatically load the data from there. Please open this "
"file and update BUCKET_NAME. Happy Hunting!"
)
args.add_argument("--best_model_path", type=str, required = True, help="path to checkpoint file to best model")
args.add_argument("--arch", type=str, choices=["tiny", "m1", "m2"], default = "m2", help="architecture")
args.add_argument("--m2id", type=str, default = "assets/moves.json", help="path to move_to_id json")
args.add_argument("--max_moves", type=int, default = 100, help="number of moves to play in the game")
args.add_argument("--depth", type=int, default = 60, help="max tree depth in recursion for MCTS")
args.add_argument("--sims", type=int, default = 200, help="number of simulations to perform for each move")
args.add_argument("--buffer_size", type=int, default = int(1e9), help="total training buffer size")
args.add_argument("--n_data_collection_games", type=int, default = 0, help="total games to perform in each training loop for data collection")
args.add_argument("--n_evaluation_games", type=int, default = 4, help="number of games for evaluation")
args.add_argument("--seed", type=int, default = 4, help="seed value")
args = args.parse_args()
# set_seed()
# load vocab
with open(args.m2id, "r") as f:
vocab = json.load(f)
inv_vocab = {v:k for k,v in vocab.items()}
if args.arch == "tiny":
n_embd = 128
n_layer = 8
n_head = 8
elif args.arch == "m2":
n_embd = 240
n_layer = 12
n_head = 12
elif args.arch == "m1": # medium
n_embd = 200
n_layer = 10
n_head = 10
best_model_config = ModelConfig(
vocab_size=len(vocab)-1,
n_positions=85*2,
n_ctx=85*2,
n_embd=n_embd,
n_layer=n_layer,
n_head=n_head,
loss_method="mse", # simple regression head
vocab_path = args.m2id,
model_path = args.best_model_path
)
print(best_model_config)
# config for SelfPlay
selfplay_config = SelfPlayConfig(
depth=args.depth,
sims=args.sims,
buffer_size=args.buffer_size,
max_moves = args.max_moves,
n_data_collection_games=args.n_data_collection_games,
n_evaluation_games=args.n_evaluation_games,
)
print(selfplay_config)
# config for trainer
trainer_config = SelfPlayTrainerConfig(
num_epochs=2,
batch_size=64,
lr=3e-4,
betas=(0.9, 0.95),
grad_norm_clip=1.0,
ckpt_path=args.best_model_path, # no overrides happen
save_every=100,
scheduler="GPT-3", # default, right now we only support GPT-3 style
weight_decay=0.1,
warmup_perc=0.1,
warmup_tokens=100,
final_tokens=10000,
)
print(trainer_config)
# define the manger
manager = SelfPlayManager(
config=selfplay_config,
vocab=vocab,
trainer_config = trainer_config,
inv_vocab=inv_vocab,
best_model_config=best_model_config,
verbose = True
)
print(manager)
# train from the manager
manager.start()