-
Notifications
You must be signed in to change notification settings - Fork 0
/
helpers.py
321 lines (263 loc) · 13.6 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import numpy as np
import cv2
import glob
import matplotlib.pyplot as plt
import pickle
def calibrata_camera(cal_images,nx=9,ny=6):
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((nx*ny, 3),np.float32)
objp[:,:2] = np.mgrid[0:nx, 0:ny].T.reshape(-1, 2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane
# Make a list of calibration images
# Step through the list and search for chessboard corners
for index, image in enumerate(cal_images):
image = cv2.imread(image)
img_size=image.shape[1::-1]
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
#Find the chessboard points and image points
ret, corners = cv2.findChessboardCorners(gray,(9,6),None)
#If found, add object points and image points
if ret==True:
objpoints.append(objp)
imgpoints.append(corners)
#Draw and display corners
cv2.drawChessboardCorners(image, (nx,ny), corners, ret)
write_name = 'corners_found/'+ str(index)+ '.jpg'
cv2.imwrite(write_name,image)
#cv2.imshow('image',image)
#cv2.waitKey(500)
#cv2.destroyAllWindows()
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None)
# Save the camera calibration result for later
dist_pickle = {}
dist_pickle["mtx"] = mtx
dist_pickle["dist"] = dist
dist_pickle["objpoints"]=objpoints
dist_pickle["imgpoints"]=imgpoints
pickle.dump( dist_pickle, open( "camera_cal/dist_pickle.p", "wb" ) )
def cal_undistort(image,cal_file='camera_cal/dist_pickle.p'):
# Use cv2.calibrateCamera() and cv2.undistort()
dist_pickle = pickle.load( open( cal_file, "rb" ) )
mtx = dist_pickle["mtx"]
dist = dist_pickle["dist"]
undist = cv2.undistort(image,mtx,dist,None,mtx)
return undist
def abs_sobel_thresh(image, orient='x', sobel_kernel=3, thresh=(0,255)):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
abs_sobelx=np.absolute(sobelx)
abs_sobely=np.absolute(sobely)
scaled_sobelx=np.uint8(255*abs_sobelx/np.max(abs_sobelx))
scaled_sobely=np.uint8(255*abs_sobely/np.max(abs_sobely))
if orient=='x':
grad_binary=np.zeros_like(scaled_sobelx)
grad_binary[(scaled_sobelx>=thresh[0])&(scaled_sobelx<=thresh[1])]=1
elif orient=='y':
grad_binary=np.zeros_like(scaled_sobely)
grad_binary[(scaled_sobely>=thresh[0])&(scaled_sobely<=thresh[1])]=1
return grad_binary
def mag_thresh(image, sobel_kernel=3, mag_thresh=(0,255)):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
mag=np.sqrt(sobelx**2+sobely**2)
scaled_sobel=np.uint8(255*mag/np.max(mag))
mag_binary=np.zeros_like(scaled_sobel)
mag_binary[(scaled_sobel>=mag_thresh[0])&(scaled_sobel<=mag_thresh[1])]=1
return mag_binary
def dir_threshold (image,sobel_kernel=3, thresh=(0, np.pi/2)):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
dir_sobel=np.arctan2(np.absolute(sobely),np.absolute(sobelx))
dir_binary=np.zeros_like(dir_sobel)
dir_binary[(dir_sobel>=thresh[0])&(dir_sobel<=thresh[1])]=1
return dir_binary
# Combining Thresholds
def combined_gradient(image):
gradx = abs_sobel_thresh(image, orient='x', sobel_kernel=3, thresh=(20, 100))
grady = abs_sobel_thresh(image, orient='y', sobel_kernel=3, thresh=(20, 100))
mag_binary = mag_thresh(image, sobel_kernel=3, mag_thresh=(30, 100))
dir_binary = dir_threshold(image, sobel_kernel=15, thresh=(0.6, 1.0))
combined_binary = np.zeros_like(dir_binary)
combined_binary[((gradx == 1) & (grady == 1)) | ((mag_binary == 1) & (dir_binary == 1))] = 1
return combined_binary
def hls_hsv_select(img, sthresh=(0, 255), vthresh=(0,255)):
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
s_channel = hls[:,:,2]
sbinary_output = np.zeros_like(s_channel)
sbinary_output[(s_channel >= sthresh[0]) & (s_channel <= sthresh[1])] = 1
hsv=cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
v_channel=hsv[:,:,2]
vbinary_output = np.zeros_like(v_channel)
vbinary_output[(v_channel >= vthresh[0]) & (v_channel <= vthresh[1])] = 1
output = np.zeros_like(s_channel)
output[(sbinary_output == 1) & (vbinary_output == 1)] = 1
return output
def threshold(image):
# Grayscale image
# NOTE: we already saw that standard grayscaling lost color information for the lane lines
# Explore gradients in other colors spaces / color channels to see what might work better
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
gradient_binary = combined_gradient(image)
s_binary=hls_hsv_select(image, sthresh=(100, 255), vthresh=(200,255)) # sthresh=(200, 255), vthresh=(200,255)
# Stack each channel to view their individual contributions in green and blue respectively
# This returns a stack of the two binary images, whose components you can see as different colors
color_binary = np.dstack(( np.zeros_like(gradient_binary), gradient_binary, s_binary)) * 255
# Combine the two binary thresholds
combined_binary = np.zeros_like(gradient_binary)
combined_binary[(s_binary == 1) | (gradient_binary == 1)] = 1
return combined_binary
def corners_unwarp(img):
img_size=img.shape[1::-1]
#src=np.float32([[537.6, 475.2], [742.4, 475.2], [1126.4, 673.2], [153.6, 673.2]])
#dst=np.float32([[422.4, 0.], [857.6, 0.],[857.6, 720.], [422.4, 720.]])
src=np.float32([[200,715],[1150,715],[620,450],[725,450]])
dst=np.float32([[280,715], [950,715],[280,0], [950,0]])
M=cv2.getPerspectiveTransform(src,dst)
Minv = cv2.getPerspectiveTransform(dst, src)
warped=cv2.warpPerspective(img,M,img_size, flags=cv2.INTER_LINEAR)
return warped, Minv
def find_lanelines(binary_warped):
histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
midpoint = np.int(histogram.shape[0]//2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
nwindows = 9
window_height = np.int(binary_warped.shape[0]//nwindows)
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
leftx_current = leftx_base
rightx_current = rightx_base
margin = 100
minpix = 50
left_lane_inds = []
right_lane_inds = []
for window in range(nwindows):
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0), 2)
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
'''out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
plt.imshow(out_img)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)
plt.savefig('lane.jpg')
plt.show()'''
return ploty, left_fitx, right_fitx
def find_curvature(binary_warped):
ploty, left_fitx, right_fitx=find_lanelines(binary_warped)
'''ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0])# to cover same y-range as image
quadratic_coeff = 3e-4 # arbitrary quadratic coefficient
# For each y position generate random x position within +/-50 pix
# of the line base position in each case (x=200 for left, and x=900 for right)
leftx = np.array([left_fitx[-1] + (y**2)*quadratic_coeff + np.random.randint(-50, high=51)
for y in ploty])
rightx = np.array([right_fitx[-1] + (y**2)*quadratic_coeff + np.random.randint(-50, high=51)
for y in ploty])
leftx = leftx[::-1] # Reverse to match top-to-bottom in y
rightx = rightx[::-1] # Reverse to match top-to-bottom in y
# Fit a second order polynomial to pixel positions in each fake lane line
left_fit = np.polyfit(ploty, leftx, 2)
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fit = np.polyfit(ploty, rightx, 2)
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# Plot up the fake data
mark_size = 3
plt.plot(leftx, ploty, 'o', color='red', markersize=mark_size)
plt.plot(rightx, ploty, 'o', color='blue', markersize=mark_size)
plt.xlim(0, 1280)
plt.ylim(0, 720)
plt.plot(left_fitx, ploty, color='green', linewidth=3)
plt.plot(right_fitx, ploty, color='green', linewidth=3)
plt.gca().invert_yaxis() # to visualize as we do the images
plt.show()'''
# Define y-value where we want radius of curvature
# I'll choose the maximum y-value, corresponding to the bottom of the image
'''y_eval = np.max(ploty)
left_curverad = ((1 + (2*left_fit[0]*y_eval + left_fit[1])**2)**1.5) / np.absolute(2*left_fit[0])
right_curverad = ((1 + (2*right_fit[0]*y_eval + right_fit[1])**2)**1.5) / np.absolute(2*right_fit[0])
print(left_curverad, right_curverad)
# Example values: 1926.74 1908.48'''
# Define conversions in x and y from pixels space to meters
ym_per_pix = 30/720 # meters per pixel in y dimension
xm_per_pix = 3.7/700 # meters per pixel in x dimension
y_eval = np.max(ploty)
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(ploty*ym_per_pix, left_fitx*xm_per_pix, 2)
right_fit_cr = np.polyfit(ploty*ym_per_pix, right_fitx*xm_per_pix, 2)
# Calculate the new radii of curvature
left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
# Now our radius of curvature is in meters
#print(left_curverad, 'm', right_curverad, 'm')
# Example values: 632.1 m 626.2 m
img_middle = (left_fitx[-1] + right_fitx[-1])//2
veh_pos = binary_warped.shape[1]//2
dx = (veh_pos - img_middle)*xm_per_pix # Positive if on right, Negative on left
return left_curverad, right_curverad, dx
def vis(undist,warped,Minv):
# Create an image to draw the lines on
ploty, left_fitx, right_fitx=find_lanelines(warped)
warp_zero = np.zeros_like(warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, Minv, (undist.shape[1], undist.shape[0]))
# Combine the result with the original image
result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)
#plt.imshow(result)
#plt.show()
return result
def put_text(image, left_curverad,right_curverad, dx):
# add text backdrop
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(image,'Left radius of curvature = %.2f m'%(left_curverad),(50,50), font, 1,(255,255,255),2,cv2.LINE_AA)
cv2.putText(image,'Right radius of curvature = %.2f m'%(right_curverad),(50,80), font, 1,(255,255,255),2,cv2.LINE_AA)
cv2.putText(image,'Vehicle position : %.2f m %s of center'%(abs(dx), 'left' if dx < 0 else 'right'),(50,110),
font, 1,(255,255,255),2,cv2.LINE_AA)
return image