Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The new version of Pytorch needs to specify the tensor location #7

Open
qzc438 opened this issue Aug 27, 2024 · 3 comments
Open

The new version of Pytorch needs to specify the tensor location #7

qzc438 opened this issue Aug 27, 2024 · 3 comments

Comments

@qzc438
Copy link

qzc438 commented Aug 27, 2024

As the title described, please also review the attached error information.
RuntimeError: Expected all tensors to be on the same device, but found at least two devices (when checking argument for argument index in method wrapper_CUDA__index_select)

@yaojin17
Copy link
Owner

yaojin17 commented Sep 30, 2024

Apologies for the late response. Has the issue been resolved? I'm using torch==2.1.2+cu118 on my end.

@qzc438
Copy link
Author

qzc438 commented Sep 30, 2024

Sorry, I still cannot resolve this issue.

@yaojin17
Copy link
Owner

name: base
channels:
  - conda-forge
  - https://repo.anaconda.com/pkgs/main
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - _openmp_mutex=5.1=1_gnu
  - asttokens=2.4.1=pyhd8ed1ab_0
  - brotlipy=0.7.0=py310h7f8727e_1002
  - bzip2=1.0.8=h7b6447c_0
  - ca-certificates=2024.2.2=hbcca054_0
  - certifi=2024.2.2=pyhd8ed1ab_0
  - cffi=1.15.1=py310h5eee18b_3
  - charset-normalizer=2.0.4=pyhd3eb1b0_0
  - comm=0.2.1=pyhd8ed1ab_0
  - conda=23.1.0=py310h06a4308_0
  - conda-content-trust=0.1.3=py310h06a4308_0
  - conda-package-handling=2.0.2=py310h06a4308_0
  - conda-package-streaming=0.7.0=py310h06a4308_0
  - cryptography=38.0.4=py310h9ce1e76_0
  - debugpy=1.6.7=py310h6a678d5_0
  - decorator=5.1.1=pyhd8ed1ab_0
  - entrypoints=0.4=pyhd8ed1ab_0
  - exceptiongroup=1.2.0=pyhd8ed1ab_2
  - executing=2.0.1=pyhd8ed1ab_0
  - idna=3.4=py310h06a4308_0
  - ipykernel=6.29.0=pyhd33586a_0
  - ipython=8.21.0=pyh707e725_0
  - jedi=0.19.1=pyhd8ed1ab_0
  - jupyter_client=7.3.4=pyhd8ed1ab_0
  - jupyter_core=5.7.1=py310hff52083_0
  - ld_impl_linux-64=2.38=h1181459_1
  - libffi=3.4.2=h6a678d5_6
  - libgcc-ng=11.2.0=h1234567_1
  - libgomp=11.2.0=h1234567_1
  - libsodium=1.0.18=h36c2ea0_1
  - libstdcxx-ng=11.2.0=h1234567_1
  - libuuid=1.41.5=h5eee18b_0
  - matplotlib-inline=0.1.6=pyhd8ed1ab_0
  - ncurses=6.4=h6a678d5_0
  - nest-asyncio=1.6.0=pyhd8ed1ab_0
  - openssl=1.1.1w=h7f8727e_0
  - parso=0.8.3=pyhd8ed1ab_0
  - pexpect=4.9.0=pyhd8ed1ab_0
  - pickleshare=0.7.5=py_1003
  - platformdirs=4.2.0=pyhd8ed1ab_0
  - pluggy=1.0.0=py310h06a4308_1
  - prompt-toolkit=3.0.42=pyha770c72_0
  - ptyprocess=0.7.0=pyhd3deb0d_0
  - pure_eval=0.2.2=pyhd8ed1ab_0
  - pycosat=0.6.4=py310h5eee18b_0
  - pycparser=2.21=pyhd3eb1b0_0
  - pygments=2.17.2=pyhd8ed1ab_0
  - pyopenssl=22.0.0=pyhd3eb1b0_0
  - pysocks=1.7.1=py310h06a4308_0
  - python=3.10.9=h7a1cb2a_0
  - python-dateutil=2.8.2=pyhd8ed1ab_0
  - python_abi=3.10=2_cp310
  - pyzmq=25.1.2=py310h6a678d5_0
  - readline=8.2=h5eee18b_0
  - requests=2.28.1=py310h06a4308_0
  - ruamel.yaml=0.17.21=py310h5eee18b_0
  - ruamel.yaml.clib=0.2.6=py310h5eee18b_1
  - setuptools=65.6.3=py310h06a4308_0
  - six=1.16.0=pyhd3eb1b0_1
  - sqlite=3.40.1=h5082296_0
  - stack_data=0.6.2=pyhd8ed1ab_0
  - tk=8.6.12=h1ccaba5_0
  - toolz=0.12.0=py310h06a4308_0
  - tornado=6.1=py310h5764c6d_3
  - tqdm=4.64.1=py310h06a4308_0
  - traitlets=5.14.1=pyhd8ed1ab_0
  - typing_extensions=4.9.0=pyha770c72_0
  - urllib3=1.26.14=py310h06a4308_0
  - wcwidth=0.2.13=pyhd8ed1ab_0
  - wheel=0.37.1=pyhd3eb1b0_0
  - xz=5.2.10=h5eee18b_1
  - zeromq=4.3.5=h6a678d5_0
  - zlib=1.2.13=h5eee18b_0
  - zstandard=0.18.0=py310h5eee18b_0
  - pip:
      - absl-py==1.4.0
      - accelerate==0.26.1
      - aiofiles==23.2.1
      - aiohttp==3.9.1
      - aioprometheus==23.12.0
      - aiosignal==1.3.1
      - altair==5.2.0
      - annotated-types==0.6.0
      - antlr4-python3-runtime==4.9.3
      - anyio==4.2.0
      - apex==0.1
      - appdirs==1.4.4
      - async-timeout==4.0.3
      - attrs==23.2.0
      - boto3==1.26.121
      - botocore==1.29.121
      - cachetools==5.3.0
      - chardet==5.2.0
      - click==8.1.3
      - cmake==3.26.3
      - colorama==0.4.6
      - contourpy==1.2.0
      - cycler==0.12.1
      - dataproperty==1.0.1
      - datasets==2.17.1
      - deepspeed==0.12.0
      - dill==0.3.7
      - docker-pycreds==0.4.0
      - einops==0.7.0
      - evaluate==0.4.1
      - fairscale==0.4.13
      - fastapi==0.108.0
      - ffmpy==0.3.1
      - filelock==3.12.0
      - flash-attn==2.4.2
      - fonttools==4.47.2
      - frozenlist==1.4.1
      - fsspec==2023.10.0
      - fuzzywuzzy==0.18.0
      - gauge==0.1.2
      - gitdb==4.0.10
      - gitpython==3.1.31
      - google-auth==2.17.3
      - google-auth-oauthlib==1.0.0
      - gradio==4.14.0
      - gradio-client==0.8.0
      - greenlet==3.0.3
      - grpcio==1.54.0
      - h11==0.14.0
      - hjson==3.1.0
      - httpcore==1.0.2
      - httptools==0.6.1
      - httpx==0.26.0
      - huggingface-hub==0.20.3
      - hydra-core==1.3.2
      - importlib-resources==6.1.1
      - jieba==0.42.1
      - jinja2==3.1.2
      - jmespath==1.0.1
      - joblib==1.2.0
      - jsonline==0.2.1
      - jsonlines==4.0.0
      - jsonschema==4.20.0
      - jsonschema-specifications==2023.12.1
      - kiwisolver==1.4.5
      - lit==16.0.2
      - lm-eval==1.0.0
      - markdown==3.4.3
      - markdown-it-py==3.0.0
      - markupsafe==2.1.2
      - matplotlib==3.8.2
      - mbstrdecoder==1.1.3
      - mdurl==0.1.2
      - megablocks==0.5.0
      - megatron-core==0.4.0
      - mpmath==1.3.0
      - msgpack==1.0.7
      - multidict==6.0.4
      - multiprocess==0.70.15
      - networkx==3.1
      - ninja==1.11.1
      - nltk==3.8.1
      - numexpr==2.8.8
      - numpy==1.24.3
      - nvidia-cublas-cu12==12.1.3.1
      - nvidia-cuda-cupti-cu12==12.1.105
      - nvidia-cuda-nvrtc-cu12==12.1.105
      - nvidia-cuda-runtime-cu12==12.1.105
      - nvidia-cudnn-cu12==8.9.2.26
      - nvidia-cufft-cu12==11.0.2.54
      - nvidia-curand-cu12==10.3.2.106
      - nvidia-cusolver-cu12==11.4.5.107
      - nvidia-cusparse-cu12==12.1.0.106
      - nvidia-nccl-cu12==2.18.1
      - nvidia-nvjitlink-cu12==12.3.101
      - nvidia-nvtx-cu12==12.1.105
      - oauthlib==3.2.2
      - omegaconf==2.3.0
      - openai==0.28.1
      - orjson==3.9.10
      - packaging==23.1
      - pandas==2.1.4
      - pathtools==0.1.2
      - pathvalidate==3.2.0
      - peft==0.7.1
      - pillow==9.5.0
      - pip==23.3.2
      - portalocker==2.8.2
      - protobuf==3.20.0
      - psutil==5.9.5
      - py-cpuinfo==9.0.0
      - pyarrow==14.0.2
      - pyarrow-hotfix==0.6
      - pyasn1==0.5.0
      - pyasn1-modules==0.3.0
      - pybind11==2.10.4
      - pycocoevalcap==1.2
      - pycocotools==2.0.7
      - pycountry==23.12.11
      - pydantic==1.10.13
      - pydantic-core==2.14.6
      - pydub==0.25.1
      - pyflakes==3.2.0
      - pynvml==11.5.0
      - pyparsing==3.1.1
      - pyprof==0.0.7
      - pytablewriter==1.2.0
      - python-dotenv==1.0.0
      - python-multipart==0.0.6
      - pytz==2023.3.post1
      - pyyaml==6.0
      - quantile-python==1.1
      - rapidfuzz==3.6.1
      - ray==2.9.0
      - referencing==0.32.1
      - regex==2023.3.23
      - requests-oauthlib==1.3.1
      - responses==0.18.0
      - rich==13.7.0
      - rouge-score==0.1.2
      - rpds-py==0.16.2
      - rsa==4.9
      - s3transfer==0.6.0
      - sacrebleu==1.5.0
      - safetensors==0.4.1
      - scikit-learn==1.3.2
      - scipy==1.11.4
      - semantic-version==2.10.0
      - sentencepiece==0.1.99
      - sentry-sdk==1.22.2
      - setproctitle==1.3.2
      - shellingham==1.5.4
      - smmap==5.0.0
      - sniffio==1.3.0
      - sqlalchemy==2.0.25
      - sqlitedict==2.1.0
      - stanford-stk==0.0.6
      - starlette==0.32.0.post1
      - sympy==1.11.1
      - tabledata==1.3.3
      - tcolorpy==0.1.4
      - tensorboard==2.13.0
      - tensorboard-data-server==0.7.0
      - thefuzz==0.20.0
      - threadpoolctl==3.2.0
      - tiktoken==0.5.2
      - tokenizers==0.15.2
      - tomlkit==0.12.0
      - torch==2.1.2+cu118
      - torchaudio==2.0.1+cu118
      - torchvision==0.15.1+cu118
      - tqdm-multiprocess==0.0.11
      - transformers==4.36.0
      - triton==2.1.0
      - typepy==1.3.2
      - typer==0.9.0
      - tzdata==2023.4
      - uvicorn==0.25.0
      - uvloop==0.19.0
      - vllm==0.2.4+cu118
      - wandb==0.16.2
      - watchfiles==0.21.0
      - websockets==11.0.3
      - werkzeug==2.3.3
      - xformers==0.0.23.post1+cu118
      - xxhash==3.4.1
      - yarl==1.9.4
      - zhconv==1.4.3
prefix: /root/miniconda3

Could you try this environment setup? It's the exact environment I used for my experiments.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants