-
Notifications
You must be signed in to change notification settings - Fork 366
/
modelnet_x3_l4.py
70 lines (49 loc) · 1.32 KB
/
modelnet_x3_l4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/python3
import os
import sys
import math
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import data_utils
load_fn = data_utils.load_cls_train_val
balance_fn = None
map_fn = None
keep_remainder = True
save_ply_fn = None
num_class = 40
sample_num = 1024
batch_size = 128
num_epochs = 1024
step_val = 500
learning_rate_base = 0.01
decay_steps = 8000
decay_rate = 0.5
learning_rate_min = 1e-6
weight_decay = 1e-5
jitter = 0.0
jitter_val = 0.0
rotation_range = [0, math.pi, 0, 'u']
rotation_range_val = [0, 0, 0, 'u']
rotation_order = 'rxyz'
scaling_range = [0.1, 0.1, 0.1, 'g']
scaling_range_val = [0, 0, 0, 'u']
sample_num_variance = 1 // 8
sample_num_clip = 1 // 4
x = 3
xconv_param_name = ('K', 'D', 'P', 'C', 'links')
xconv_params = [dict(zip(xconv_param_name, xconv_param)) for xconv_param in
[(8, 1, -1, 16 * x, []),
(12, 2, 384, 32 * x, []),
(16, 2, 128, 64 * x, []),
(16, 3, 128, 128 * x, [])]]
with_global = True
fc_param_name = ('C', 'dropout_rate')
fc_params = [dict(zip(fc_param_name, fc_param)) for fc_param in
[(128 * x, 0.0),
(64 * x, 0.8)]]
sampling = 'random'
optimizer = 'adam'
epsilon = 1e-2
data_dim = 6
use_extra_features = False
with_X_transformation = True
sorting_method = None