forked from willwhitney/dc-ign
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_networks.lua
293 lines (245 loc) · 10.2 KB
/
visualize_networks.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
require 'cunn'
require 'pl'
require 'paths'
require 'optim'
require 'gnuplot'
require 'math'
require 'rmsprop'
require 'cudnn'
require 'nnx'
require 'image'
require 'utils'
require 'lfs'
require 'image'
require 'sys'
require 'xlua'
require 'torch'
require 'nn'
require 'rmsprop'
require 'image'
require 'modules/KLDCriterion'
require 'modules/LinearCR'
require 'modules/Reparametrize'
require 'cutorch'
require 'cunn'
require 'optim'
require 'modules/GaussianCriterion'
require 'testf'
require 'utils'
require 'config'
require 'modules/SelectiveGradientFilter'
require 'modules/SelectiveOutputClamp'
require 'lfs'
cmd = torch.CmdLine()
cmd:text()
cmd:text()
cmd:text('Visualize via reconstruction or generalization with params.')
cmd:text()
cmd:text('Options')
cmd:text('Change these options:')
cmd:option('--search_str', 'my_first_dcign', 'networks whose names contain this string will be rendered')
cmd:option('--base_dir', 'networks', 'absolute or relative path to networks')
cmd:option('--cnndataset_dir', '', 'CNNDATASET path')
cmd:option('--name_mod', 'sweep_pm_20', 'suffix to give to jobname')
cmd:option('--data_loc', 'data/faces/batch1', 'data location for generalization images')
cmd:option('--imwidth', 150, 'width (and height) of images')
cmd:option('--num_steps', 6, 'use code specific param upper/lower bounds')
cmd:option('--lower_bound', -20, 'lower bound for params')
cmd:option('--upper_bound', 20, 'upper bound for params')
cmd:option('--custom_bounds', false, 'use special code specific upper/lower bounds')
cmd:option('--reconstruct', false, 'do reconstruction visualization')
cmd:option('--generalize', false, 'do generalization visualization')
opt = cmd:parse(arg)
network_search_str = opt.search_str
base_directory = opt.base_dir
CNN_DATASET = opt.cnndataset_dir
assert(CNN_DATASET ~= '', 'Provide CNN_DATASET Path')
name_modifier_str = opt.name_mod
imwidth = opt.imwidth
num_steps = opt.num_steps
lower_bound = opt.lower_bound
upper_bound = opt.upper_bound
custom_bounds = opt.custom_bounds
local jobname = network_search_str ..'_'.. os.date("%b_%d_%H_%M") ..'_'.. name_modifier_str
local dataset_types = {"AZ_VARIED", "EL_VARIED", "LIGHT_AZ_VARIED", "SHAPE_VARIED"}
function lastepochnum(path)
local last = 0
for epochname in lfs.dir(path) do
if string.find(epochname, '_') then
local underscore_index = string.find(epochname, '_')
print(epochname)
local num = tonumber(string.sub(epochname, underscore_index + 1, string.len(epochname)))
if num > last then
last = num
end
end
end
return last
end
function saveImageGrid(filepath, images)
print("Saving " .. #images .. " image rows to " .. filepath)
if images ~= nil and images[1] ~= nil then
image_width = imwidth
padding = 5
images_across = #images[1]
images_down = #images
-- print(images_down, images_across)
image_output = torch.zeros(
image_width * images_down + (images_down - 1) * padding,
image_width * images_across + (images_across - 1) * padding)
for i, image_row in ipairs(images) do
for j, image in ipairs(image_row) do
y_index = j - 1
y_location = y_index * image_width + y_index * padding
x_index = i - 1
x_location = (x_index) * image_width + x_index * padding
-- print({{x_location + 1, x_location + image_width},
-- {y_location + 1, y_location + image_width}})
image_output[{{x_location + 1, x_location + image_width},
{y_location + 1, y_location + image_width}}] = image
end
end
image_output = image_output:reshape(1, image_output:size()[1], image_output:size()[2])
image.save(filepath, image_output)
end
end
---------------------- RECONSTRUCTION ----------------------
if opt.reconstruct then
local reconstruction_path = 'renderings/'..jobname..'/reconstruction'
os.execute('mkdir -p '..reconstruction_path)
local id=1
for network_name in lfs.dir(base_directory) do
local network_path = base_directory .. '/' .. network_name
if lfs.attributes(network_path).mode == 'directory' then
if string.find(network_name, network_search_str) then
print(network_name)
local images = {}
for _, dataset_type in ipairs(dataset_types) do
-- note: not sure what is supposed to be in these tmp directories to trigger this
if lfs.attributes(base_directory ..'/tmp/'..network_name.."/"..dataset_type) ~= nil then
local last_epoch = lastepochnum(base_directory ..'/tmp/'..network_name.."/"..dataset_type)
local reconstruction_gt = torch.load(paths.concat(CNN_DATASET,
'th_'..dataset_type..'/FT_test/batch' .. id))
local preds = torch.load(base_directory ..'/tmp/'..network_name.."/"..dataset_type.."/epoch_"..last_epoch..'/preds' ..id)
for i=1, preds:size()[1] do
local image_row = {}
local gt_img = reconstruction_gt[i]
local inf_img = preds[i]
table.insert(image_row, gt_img)
table.insert(image_row, inf_img)
-- image.save('reconstruction_gt_'..tostring(i)..'.png', gt_img)
-- image.save(tostring(i)..'.png', gt_img)
table.insert(images, image_row)
end
end
end
saveImageGrid(reconstruction_path..'/'..network_name..'.png', images)
end
end
end
end
---------------------- GENERALIZATION ----------------------
--original data_loc: '/home/tejas/Documents/MIT/facegen/DATASET/CNN_DATASET/AZ_VARIED/face_4
local data_location = opt.data_loc
local bsize = 20
if opt.generalize then
local generalization_path = 'renderings/'..jobname..'/generalization'
os.execute('mkdir -p '..generalization_path)
skipnum = 0
network_index = 1
for network_name in lfs.dir(base_directory) do
local network_path = base_directory .. '/' .. network_name
if lfs.attributes(network_path).mode == 'directory' then
if string.find(network_name, network_search_str) then
if network_index <= skipnum then
network_index = network_index + 1
else
if lfs.attributes(network_path .. '/vxnet.net') ~= nil then
print(network_name)
collectgarbage()
cutorch.synchronize()
local model
if true then
model = torch.load(network_path .. '/vxnet.net')
else
model = init_network2_150_mv(200, 96)
local parameters, gradients = model:getParameters()
p = torch.load(network_path .. '/parameters.t7')
parameters:copy(p)
end
local images = {}
local batch = torch.zeros(bsize,1,imwidth,imwidth)
local image_index = 1
for filename in lfs.dir(data_location) do
print("filename: " .. filename)
if string.sub(filename, string.len(filename) - 3, string.len(filename)) == ".png" then
local im_tmp = image.load(data_location .. "/" .. filename)
print("loading: " .. data_location .. "/" .. filename)
local im = torch.zeros(1,imwidth, imwidth)
im[1] = im_tmp[1]*0.21 + im_tmp[2]*0.72 + im_tmp[3]*0.07
local newim = image.scale(im[1], imwidth ,imwidth)
batch[image_index] = newim
image_index = image_index + 1
if image_index > bsize then
break
end
end
end
local clamps = model:findModules('nn.SelectiveOutputClamp')
local gradFilters = model:findModules('nn.SelectiveGradientFilter')
for clampIndex = 1, #clamps do
clamps[clampIndex].active = false
gradFilters[clampIndex].active = false
end
custom_params_table = {
{-4, 5},
{0.5, 6},
{-1.5, 4}
}
for dataset_index, dataset_type in ipairs({"AZ_VARIED", "EL_VARIED", "LIGHT_AZ_VARIED"}) do
local rendered = model:forward(batch:cuda())
local orig_repam_out = model:get(2).output:double()
local decoder = model:get(3)
--changing value of input to decoder (only first image for now)
for id = 1,8 do
local gt_image = batch[id]:double()
local inf_image = rendered[id]:double()
local image_list = {}
table.insert(image_list, gt_image)
table.insert(image_list, inf_image)
step_low = lower_bound
step_high = upper_bound
if(custom_bounds) then
step_low = custom_params_table[dataset_index][1]
step_high = custom_params_table[dataset_index][2]
end
for step = 1,num_steps do
i = step_low + (((step-1) * (step_high - step_low)) / (num_steps - 1))
-- print("Will render: " .. i .. " = " .. step_low .. "," .. step_high .. "," .. step)
local indxs = torch.Tensor({dataset_index})--torch.randperm(200)[{{1,10}}]
local repam_out = orig_repam_out:clone()
for j= 1, indxs:size()[1] do
-- local param_setting = -15 --torch.uniform(-4,4)
-- if i == 1 then
-- repam_out[id][indxs[j]] = param_setting --torch.normal(0,1)--repam_out[id][indxs[j]] + torch.uniform(-5,5) --torch.uniform(-5,5)
-- else
-- repam_out[id][indxs[j]] = -param_setting
-- end
repam_out[id][indxs[j]] = i
end
local inf_changed_image = decoder:forward(repam_out:cuda())
local inf_changed_image = inf_changed_image[id]:double()
table.insert(image_list, inf_changed_image)
end
table.insert(images, image_list)
end
saveImageGrid(generalization_path..'/'..network_name..'.png', images)
end
network_index = network_index + 1
end
end
end
end
end
end
print("done")