forked from ShaoqingRen/SPP_net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspp_poolX_to_fcX.m
70 lines (66 loc) · 2.81 KB
/
spp_poolX_to_fcX.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
function feat = spp_poolX_to_fcX(feat, layer, spp_model, use_gpu)
% feat = spp_poolX_to_fcX(feat, layer, spp_model, use_gpu)
% On-the-fly conversion of last pool features to fcX
% using the weights and biases stored in spp_model.cnn.layers.
% feat is transformed in columns for continuous memory access and fast
% speed
%
% Adapted from spp code written by Ross Girshick
% AUTORIGHTS
% ---------------------------------------------------------
% Copyright (c) 2014, Shaoqing Ren
%
% This file is part of the SPP code and is available
% under the terms of the Simplified BSD License provided in
% LICENSE. Please retain this notice and LICENSE if you use
% this file (or any portion of it) in your project.
% ---------------------------------------------------------
% Copyright (c) 2014, Ross Girshick
%
% This file is part of the R-CNN code and is available
% under the terms of the Simplified BSD License provided in
% LICENSE. Please retain this notice and LICENSE if you use
% this file (or any portion of it) in your project.
% ---------------------------------------------------------
fc_layer_ind = layer - (spp_model.cnn.first_fc_idx - 1);
if fc_layer_ind <= 0
return;
end
if use_gpu
maxNumel = 1024*1024*256; % around 4G memory
if numel(feat) < maxNumel
feat_gpu = gpuArray(feat);
for i = 1:fc_layer_ind
% weights{1} = matrix of CNN weights [input_dim x output_dim]
% weights{2} = column vector of biases
feat_gpu = max(0, bsxfun(@plus, spp_model.cnn.layers(i).weights_gpu{1} * feat_gpu, ...
spp_model.cnn.layers(i).weights_gpu{2}));
end
feat = gather(feat_gpu);
else
nSampleEach = floor(maxNumel / size(feat, 1));
nSplits = ceil(size(feat, 2) / nSampleEach);
splits = ones(nSplits, 1) * nSampleEach;
splits(end) = size(feat, 2) - sum(splits(1:end-1));
assert(sum(splits) == size(feat, 2));
feats = mat2cell(feat, size(feat, 1), splits);
for is = 1:length(feats)
feat_gpu = gpuArray(feats{is});
for i = 1:fc_layer_ind
% weights{1} = matrix of CNN weights [input_dim x output_dim]
% weights{2} = column vector of biases
feat_gpu = max(0, bsxfun(@plus, spp_model.cnn.layers(i).weights_gpu{1} * feat_gpu, ...
spp_model.cnn.layers(i).weights_gpu{2}));
end
feats{is} = gather(feat_gpu);
end
feat = cell2mat(feats);
end
else
for i = 1:fc_layer_ind
% weights{1} = matrix of CNN weights [input_dim x output_dim]
% weights{2} = column vector of biases
feat = max(0, bsxfun(@plus, spp_model.cnn.layers(i).weights{1} * feat, ...
spp_model.cnn.layers(i).weights{2}));
end
end