forked from ageorgou/ProPPA
-
Notifications
You must be signed in to change notification settings - Fork 1
/
ode_simulator.py
87 lines (75 loc) · 2.68 KB
/
ode_simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 4 11:32:33 2016
@author: Anastasis
"""
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import proppa
def solve_odes(rate_funcs,updates,init_state,t_final,
n_points=500):
def _dydt(state,t):
rates = np.array([rf(state) for rf in rate_funcs])
return rates.dot(updates)
times = np.linspace(0,t_final,n_points)
sols = odeint(_dydt,np.array(init_state),times)
return (times,sols)
def solve_odes_inhomog(rate_funcs,updates,init_state,t_final,
n_points=500):
""" To be used with inhomogeneous models, which require time as an
additional argument to the rate function """
def _dydt(state,t):
args = np.append(state,t)
rates = np.array([rf(args) for rf in rate_funcs])
return rates.dot(updates)
times = np.linspace(0,t_final,n_points)
sols = odeint(_dydt,np.array(init_state),times)
return (times,sols)
if __name__ == "__main__":
# location = "SIR_uncertain.proppa"
# model = proppa.load_model(location)
# model.numerize()
# abstract_rates = model.reaction_functions()
# params = [0.4,0.5]
# rate_funcs = [f(params) for f in abstract_rates]
## model.concretise({'r_i':0.4, 'r_r':0.5})
## rate_funcs = [rf([]) for rf in model.reaction_functions()]
# init_state = model.init_state
# updates = model.updates
# t_final = 5
# (t,sol) = solve_odes(rate_funcs,updates,init_state,t_final)
#
# obs = []
# with open(model.obsfile) as obsfile:
# names = [tok.strip() for tok in obsfile.readline().split(" ")] #names
# for line in obsfile:
# toks = [float(tok.strip()) for tok in line.split(" ")]
# obs.append(toks)
#
# for i in range(len(model.species_order)):
# plt.plot(t,[s[i] for s in sol])
# for o in obs:
# for i in range((len(model.species_order))):
# plt.plot(o[0],o[i+1],'x')
# plt.legend(model.species_order,loc="lower right")
# plt.show()
location = "mumps.proppa"
model = proppa.load_model(location)
model.numerize()
abstract_rates = model.reaction_functions()
params = []
rate_funcs = [f(params) for f in abstract_rates]
init_state = model.init_state
updates = model.updates
t_final = 18000
#t_final = 4012
(t,sol) = solve_odes(rate_funcs,updates,init_state,t_final)
to_plot = ['I']
plt.hold(True)
for species in to_plot:
plt.plot(t,[s[model.species_order.index(species)] for s in sol])
#plt.legend(to_plot,loc="lower right")
#obs = model.obs
#plt.plot([o[0] for o in obs],[o[1] for o in obs],'r')
# plt.show()