-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinfer_lora.py
executable file
·35 lines (31 loc) · 1.05 KB
/
infer_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import os
from peft import PeftModel
import torch
from transformers import AutoTokenizer, AutoModel
os.environ["CUDA_VISIBLE_DEVICES"] = '4'
model = AutoModel.from_pretrained("./chatGLM-6B", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("./chatGLM-6B", trust_remote_code=True)
model = model.eval()
model = PeftModel.from_pretrained(model, './output_lora', torch_dtype=torch.float32)
model.half().cuda()
input_text = '一个患者的卵巢小细胞癌转移至其它部位,是否有必要进行手术治疗?'
input_text = tokenizer.tokenize(input_text)
input_text = input_text + ["[gMASK]", "<sop>"]
ids = tokenizer.convert_tokens_to_ids(input_text)
print(ids)
input_ids = torch.LongTensor([ids]).cuda()
print(input_ids)
generation_kwargs = {
"min_length": 10,
"max_new_tokens": 150,
"top_p": 0.7,
"temperature": 0.95,
"do_sample": False,
"num_return_sequences": 1,
}
with torch.no_grad():
out = model.generate(
input_ids=input_ids, **generation_kwargs
)
out_text = tokenizer.decode(out[0])
print(out_text)