Step 1. Clone this repo and run the following command to install the requirements:
pip install --upgrade pip
pip install -r requirements.txt
Step 2. Verify that you have successfully installed the requirements by running the following command:
python evaluate.py \
--task configs/tasks/example.yaml \
--agent configs/agents/do_nothing.yaml
Two ways to do this.
Step 1. Create a file named your_own_agent.py
in the src/agents
folder. Write the following code in the file:
from typing import List
from src.agent import Agent
class YourOwnAgent(Agent):
"""This agent is a test agent, which does nothing. (return empty string for each action)"""
def __init__(self, **kwargs) -> None:
# load your model here
super().__init__(**kwargs)
def inference(self, history: List[dict]) -> str:
"""Inference with the given history. History is composed of a list of dict, each dict:
{
"role": str, # the role of the message, "user" or "agent" only
"content": str, # the text of the message
}
"""
# Finally return a string as the output
return "AAAAA"
Step 2. Add an import statement in src/agents/__init__.py
:
from .your_own_agent import YourOwnAgent
Step 3. Add your agent to the config file configs/agents/your_own_agent.yaml
:
module: "src.agents.YourOwnAgent" # The module path to your agent class
parameters:
name: "Do-Nothing-Agent"
key1: value1 # The parameters fed into the constructor of your agent class
key2: value2 # The parameters fed into the constructor of your agent class
See Model Server Implementation for more detailed instruction.
Step 1. Modify eval.sh
: Replace the AGENT_CONFIG
argument with your own agent config file path.
AGENT_CONFIG=configs/agents/your_own_agent.yaml
Step 2. Run it!
bash eval.sh
Step 3. Check Your Results in outputs
folder.