forked from ihp-lab/Avec2019_DDS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
define_models.py
73 lines (55 loc) · 2 KB
/
define_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""
Defines models
"""
import numpy
import torch
import torchtext
import torchvision.models
import torch.backends.cudnn
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence
from torch.nn.utils.rnn import pad_packed_sequence
from torch.nn.utils.clip_grad import clip_grad_norm_
from collections import OrderedDict
device = torch.device('cuda')
#******************** UNIMODAL REGRESSOR SEQUENCE ********************#
class UnimodalRegressorSequence(torch.nn.Module):
"""
RNN-based unimodal regressor model
"""
def __init__(self, opt):
super(UnimodalRegressorSequence, self).__init__()
self.feature_dim = opt.feature_dim
self.rnn_layer_dim = opt.rnn_layer_dim
self.output_dim = opt.class_num
self.rnn_layer_num = opt.rnn_layer_num
self.bidirectional = opt.bidirectional
self.dropout_rate = opt.dropout_rate
# Layer parameters
self.rnn = torch.nn.GRU(input_size=self.feature_dim,
hidden_size=self.rnn_layer_dim,
num_layers=self.rnn_layer_num,
bidirectional=self.bidirectional,
batch_first=True)
self.dropout = torch.nn.Dropout(self.dropout_rate)
self.linear2 = torch.nn.Linear(opt.hidden_layer_dim, self.output_dim)
# Model parameters
self.optim_params = []
self.optim_params += list(self.rnn.parameters())
self.optim_params += list(self.linear2.parameters())
def forward_once(self, seq, length):
packed = pack_padded_sequence(seq, length, batch_first=True)
rnn_out, _ = self.rnn(packed)
padded = pad_packed_sequence(rnn_out, batch_first=True)
I = torch.LongTensor(length).view(-1, 1, 1)
I = Variable(I.expand(seq.size(0), 1, self.rnn_layer_dim) - 1).cuda()
x = torch.gather(padded[0], 1, I).squeeze(1)
x = self.dropout(x)
x = self.linear2(x)
return x
def forward(self, seq, length):
idx = sorted(range(len(length)), key=length.__getitem__, reverse=True)
ridx = sorted(range(len(length)), key=idx.__getitem__)
y = self.forward_once(seq[idx,:], sorted(length, reverse=True))
y = y[ridx,:]
return y