forked from createamind/candy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
646 lines (538 loc) · 24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
# Keyboard controlling for CARLA. Please refer to client_example.py for a simpler
# and more documented example.
"""
Welcome to CARLA manual control.
Use ARROWS or WASD keys for control.
W : throttle
S : brake
AD : steer
Q : toggle reverse
Space : hand-brake
P : toggle autopilot
R : restart level
1-9 : set reward
n : disable imitation learning
m : enable imitation learning(default)
t : toggle display
c : toggle model control(Default: model control the car. You may change it into manual control)
v : reset now
STARTING in a moment...
"""
from __future__ import print_function, absolute_import, division
import argparse
import logging
import random
import time
import datetime
try:
import pygame
from pygame.locals import K_DOWN
from pygame.locals import K_LEFT
from pygame.locals import K_RIGHT
from pygame.locals import K_SPACE
from pygame.locals import K_UP
from pygame.locals import K_a
from pygame.locals import K_d
from pygame.locals import K_p
from pygame.locals import K_q
from pygame.locals import K_r
from pygame.locals import K_s
from pygame.locals import K_w
from pygame.locals import K_t
from pygame.locals import K_m
from pygame.locals import K_n
from pygame.locals import K_1
from pygame.locals import K_2
from pygame.locals import K_3
from pygame.locals import K_4
from pygame.locals import K_5
from pygame.locals import K_6
from pygame.locals import K_7
from pygame.locals import K_8
from pygame.locals import K_9
from pygame.locals import K_v
from pygame.locals import K_c
except ImportError:
raise RuntimeError('cannot import pygame, make sure pygame package is installed')
try:
import numpy as np
except ImportError:
raise RuntimeError('cannot import numpy, make sure numpy package is installed')
from carla import image_converter
from carla import sensor
from carla.client import make_carla_client, VehicleControl
from carla.planner.map import CarlaMap
from carla.settings import CarlaSettings
from carla.tcp import TCPConnectionError
from carla.util import print_over_same_line
from carla_wrapper import Carla_Wrapper
WINDOW_WIDTH = 500
WINDOW_HEIGHT = 500
MINI_WINDOW_WIDTH = 200
MINI_WINDOW_HEIGHT = 200
BUFFER_LIMIT = 501
def make_carla_settings(args):
"""Make a CarlaSettings object with the settings we need."""
settings = CarlaSettings()
settings.set(
SynchronousMode=True,
SendNonPlayerAgentsInfo=True,
NumberOfVehicles=60,
NumberOfPedestrians=60,
WeatherId=random.choice([1, 3, 7, 8, 14]),
QualityLevel=args.quality_level)
settings.randomize_seeds()
camera0 = sensor.Camera('CameraRGB')
camera0.set_image_size(320, 320)
camera0.set_position(2.0, 0.0, 1.4)
camera0.set_rotation(0.0, 0.0, 0.0)
settings.add_sensor(camera0)
camera1 = sensor.Camera('CameraDepth', PostProcessing='Depth')
camera1.set_image_size(320, 320)
camera1.set_position(2.0, 0.0, 1.4)
camera1.set_rotation(0.0, 0.0, 0.0)
settings.add_sensor(camera1)
camera2 = sensor.Camera('CameraSemSeg', PostProcessing='SemanticSegmentation')
camera2.set_image_size(320, 320)
camera2.set_position(2.0, 0.0, 1.4)
camera2.set_rotation(0.0, 0.0, 0.0)
settings.add_sensor(camera2)
camera3 = sensor.Camera('CameraForHuman')
camera3.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT)
camera3.set_position(2.0, 0.0, 1.4)
camera3.set_rotation(0.0, 0.0, 0.0)
settings.add_sensor(camera3)
if args.lidar:
lidar = sensor.Lidar('Lidar32')
lidar.set_position(0, 0, 2.5)
lidar.set_rotation(0, 0, 0)
lidar.set(
Channels=32,
Range=50,
PointsPerSecond=100000,
RotationFrequency=10,
UpperFovLimit=10,
LowerFovLimit=-30)
settings.add_sensor(lidar)
return settings
class Timer(object):
def __init__(self):
self.step = 0
self._lap_step = 0
self._lap_time = time.time()
def tick(self):
self.step += 1
def lap(self):
self._lap_step = self.step
self._lap_time = time.time()
def ticks_per_second(self):
return float(self.step - self._lap_step) / self.elapsed_seconds_since_lap()
def elapsed_seconds_since_lap(self):
return time.time() - self._lap_time
class CarlaGame(object):
def __init__(self, carla_client, args, wrapper):
self.client = carla_client
self._carla_settings = make_carla_settings(args)
self._timer = None
self._display = None
self._main_image = None
self._mini_view_image1 = None
self._mini_view_image2 = None
self._enable_autopilot = True
self._lidar_measurement = None
self._map_view = None
self._is_on_reverse = False
self._city_name = args.map_name
self._map = CarlaMap(self._city_name, 0.1643, 50.0) if self._city_name is not None else None
self._map_shape = self._map.map_image.shape if self._city_name is not None else None
self._map_view = self._map.get_map(WINDOW_HEIGHT) if self._city_name is not None else None
self._position = None
self._agent_positions = None
self.should_display = True
random.seed(datetime.datetime.now())
self.manual = True
self.manual_control = (random.randint(1,1000) == 1)
self.cnt = 0 #与buffer_limit进行比较,控制训练的切换
self.history_collision = 0
self.ucnt = 0
self.prev_control = None
self.history_steer = 0
self.endnow = False#按下v会置为True,立刻进行training
self.carla_wrapper = wrapper
def execute(self):
"""Launch the PyGame."""
pygame.init()
self._initialize_game()
try:
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
return
self._on_loop() #整个模型与carla交互.
self._on_render() #pygame展示
finally:
pygame.quit()
def _initialize_game(self):
if self._city_name is not None:
self._display = pygame.display.set_mode(
(WINDOW_WIDTH + int((WINDOW_HEIGHT/float(self._map.map_image.shape[0]))*self._map.map_image.shape[1]), WINDOW_HEIGHT),
pygame.HWSURFACE | pygame.DOUBLEBUF)
else:
self._display = pygame.display.set_mode(
(WINDOW_WIDTH, WINDOW_HEIGHT),
pygame.HWSURFACE | pygame.DOUBLEBUF)
logging.debug('pygame started')
self._on_new_episode()
def _on_new_episode(self):
if random.randint(1,3) == 1:
self._carla_settings.set(SeedVehicles=4)
self._carla_settings.set(SeedPedestrians=4)
self._carla_settings.set(WeatherId=0)
# self._carla_settings.randomize_weather()
scene = self.client.load_settings(self._carla_settings)
number_of_player_starts = len(scene.player_start_spots)
player_start = np.random.randint(number_of_player_starts)
if random.randint(1,3) == 1:
player_start = 76
print('Starting new episode...')
self.client.start_episode(player_start)
self._timer = Timer()
self._is_on_reverse = False
def _on_loop(self):
self._timer.tick()
measurements, sensor_data = self.client.read_data()
self._main_image = sensor_data.get('CameraForHuman', None)
self._mini_view_image1 = sensor_data.get('CameraDepth', None)
self._mini_view_image2 = sensor_data.get('CameraSemSeg', None)
self._lidar_measurement = sensor_data.get('Lidar32', None)
# self._human_image = sensor_data.get('CameraForHuman', None)
collision = self.get_collision(measurements) #得到瞬时的碰撞
control, manual_reward = self._get_keyboard_control(pygame.key.get_pressed()) #得到键盘的输入,以及键盘输入的reward
reward, _ = self.calculate_reward(measurements, manual_reward, collision) #计算reward,如果键盘没有reward
# Print measurements every second.
if self._timer.elapsed_seconds_since_lap() > 1.0:
if self._city_name is not None:
# Function to get car position on map.
map_position = self._map.convert_to_pixel([
measurements.player_measurements.transform.location.x,
measurements.player_measurements.transform.location.y,
measurements.player_measurements.transform.location.z])
# Function to get orientation of the road car is in.
lane_orientation = self._map.get_lane_orientation([
measurements.player_measurements.transform.location.x,
measurements.player_measurements.transform.location.y,
measurements.player_measurements.transform.location.z])
self._print_player_measurements_map(
measurements.player_measurements,
map_position,
lane_orientation, reward)
else:
self._print_player_measurements(measurements.player_measurements)
# Plot position on the map as well.
self._timer.lap()
# Set the player position
if self._city_name is not None:
self._position = self._map.convert_to_pixel([
measurements.player_measurements.transform.location.x,
measurements.player_measurements.transform.location.y,
measurements.player_measurements.transform.location.z])
self._agent_positions = measurements.non_player_agents
if control == "done":
control = measurements.player_measurements.autopilot_control
self.history_steer = control.steer
self.client.send_control(control)
return
elif control is None:
self._on_new_episode()
return
# if self.prev_control is None or self.ucnt == 5:
if self._enable_autopilot: #系统自带的自动驾驶
control = measurements.player_measurements.autopilot_control
model_control = self.carla_wrapper.get_control([measurements, sensor_data, control, reward, self.history_steer, control, self.manual])
# else:
# if random.randint(1,2) == 1:
# else:
# control = measurements.player_measurements.autopilot_control
# self.ucnt = 0
# self.prev_control = control
# else:
# self.ucnt += 1
# control = self.prev_control
# print(measurements.player_measurements.transform.rotation)
# print(measurements.player_measurements.transform.location)
# print(measurements.player_measurements.transform.orientation)
print(control)
print(model_control)
#Speed Limit
if measurements.player_measurements.forward_speed * 3.6 > 30:
model_control.throttle = 0
if self.manual_control:
self.history_steer = control.steer
self.client.send_control(control)
else:
self.history_steer = model_control.steer
self.client.send_control(model_control)
#控制什么时候进行training
if self.endnow or (self.cnt > 5 and (self.cnt > BUFFER_LIMIT or collision > 0 or measurements.player_measurements.intersection_offroad > 0.05\
or measurements.player_measurements.intersection_otherlane > 0.05)):
# if self.endnow or (self.cnt > 10 and (self.cnt > BUFFER_LIMIT or collision > 0)):
#总结这段时间的情况,调用training
rewardlala = -1 if (collision > 0 or measurements.player_measurements.intersection_offroad > 0.05 or measurements.player_measurements.intersection_otherlane > 0.05) else None
self.carla_wrapper.post_process([measurements, sensor_data, model_control, rewardlala, self.history_steer, control, self.manual], self.cnt)
self.cnt = 0
self.endnow = False
else:
#不应该进行trainging
self.cnt += 1
self.endnow = False
#记录当前步的状况
self.carla_wrapper.update([measurements, sensor_data, model_control, reward, self.history_steer, control, self.manual])
def get_collision(self, measurements):
new_collision = measurements.player_measurements.collision_vehicles + measurements.player_measurements.collision_pedestrians + measurements.player_measurements.collision_other
ans = new_collision - self.history_collision #得到瞬时值 累加值的差
self.history_collision = new_collision
return ans
def calculate_reward(self, measurements, reward, collision):
speed = measurements.player_measurements.forward_speed * 3.6 if measurements.player_measurements.forward_speed > 0 else 0
# collision = measurements.player_measurements.collision_vehicles + measurements.player_measurements.collision_pedestrians + measurements.player_measurements.collision_other
# intersection = measurements.player_measurements.intersection_otherlane + measurements.player_measurements.intersection_offroad
intersection = measurements.player_measurements.intersection_offroad + measurements.player_measurements.intersection_otherlane
# print('speed = ' + str(speed) + 'collision = ' + str(collision) + 'intersection = ' + str(intersection))
if reward is None:
reward = (60 - abs(speed - 30) * 2.0 - collision / 50 - intersection * 100) / 100.0 #计算reward, speed距离30km/h的差,collision大概是在0~10000
# reward = ( speed - collision / 50 - intersection * 100) / 100.0 #计算reward, speed距离30km/h
return reward, [speed, collision, intersection]
def _get_keyboard_control(self, keys):
"""
Return a VehicleControl message based on the pressed keys. Return None
if a new episode was requested.
"""
if keys[K_r]:
return None, None
if keys[K_t]:
self.should_display = not self.should_display
return 'done', None
if keys[K_m]:
self.manual = True
return 'done', None
if keys[K_n]:
self.manual = False
return 'done', None
if keys[K_v]:
self.endnow = True
return 'done', None
control = VehicleControl()
if keys[K_LEFT] or keys[K_a]:
control.steer = -1.0
if keys[K_RIGHT] or keys[K_d]:
control.steer = 1.0
if keys[K_UP] or keys[K_w]:
control.throttle = 1.0
if keys[K_DOWN] or keys[K_s]:
control.brake = 1.0
if keys[K_SPACE]:
control.hand_brake = True
if keys[K_q]:
self._is_on_reverse = not self._is_on_reverse
if keys[K_c]:
self.manual_control = not self.manual_control
if keys[K_p]:#系统自带的自动驾驶
self._enable_autopilot = not self._enable_autopilot
control.reverse = self._is_on_reverse
reward = None
if keys[K_1]:
reward = -1
if keys[K_2]:
reward = -0.5
if keys[K_3]:
reward = -0.25
if keys[K_4]:
reward = -0.1
if keys[K_5]:
reward = 0
if keys[K_6]:
reward = 0.1
if keys[K_7]:
reward = 0.25
if keys[K_8]:
reward = 0.5
if keys[K_9]:
reward = 1
return control, reward
def _print_player_measurements_map(
self,
player_measurements,
map_position,
lane_orientation,
reward):
message = 'Step {step} ({fps:.1f} FPS): '
message += 'Map Position ({map_x:.1f},{map_y:.1f}) '
message += 'Lane Orientation ({ori_x:.1f},{ori_y:.1f}) '
message += '{speed:.2f} km/h, '
message += '{other_lane:.0f}% other lane, {offroad:.0f}% off-road,'
message += '{reward:.2f} reward.'
message = message.format(
map_x=map_position[0],
map_y=map_position[1],
ori_x=lane_orientation[0],
ori_y=lane_orientation[1],
step=self._timer.step,
fps=self._timer.ticks_per_second(),
speed=player_measurements.forward_speed * 3.6,
other_lane=100 * player_measurements.intersection_otherlane,
offroad=100 * player_measurements.intersection_offroad,
reward=reward)
print_over_same_line(message)
def _print_player_measurements(self, player_measurements):
message = 'Step {step} ({fps:.1f} FPS): '
message += '{speed:.2f} km/h, '
message += '{other_lane:.0f}% other lane, {offroad:.0f}% off-road'
message = message.format(
step=self._timer.step,
fps=self._timer.ticks_per_second(),
speed=player_measurements.forward_speed * 3.6,
other_lane=100 * player_measurements.intersection_otherlane,
offroad=100 * player_measurements.intersection_offroad)
print_over_same_line(message)
def _on_render(self):
if self.should_display == False:
return
gap_x = (WINDOW_WIDTH - 2 * MINI_WINDOW_WIDTH) / 3
mini_image_y = WINDOW_HEIGHT - MINI_WINDOW_HEIGHT - gap_x
if self._main_image is not None:
array = image_converter.to_rgb_array(self._main_image)
# print(array.shape)
surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))
self._display.blit(surface, (0, 0))
# if self._mini_view_image1 is not None:
# array = image_converter.depth_to_logarithmic_grayscale(self._mini_view_image1)
# surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))
# self._display.blit(surface, (gap_x, mini_image_y))
# if self._mini_view_image2 is not None:
# array = image_converter.labels_to_cityscapes_palette(
# self._mini_view_image2)
# surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))
# self._display.blit(
# surface, (2 * gap_x + MINI_WINDOW_WIDTH, mini_image_y))
# if self._lidar_measurement is not None:
# lidar_data = np.array(self._lidar_measurement.data[:, :2])
# lidar_data *= 2.0
# lidar_data += 100.0
# lidar_data = np.fabs(lidar_data)
# lidar_data = lidar_data.astype(np.int32)
# lidar_data = np.reshape(lidar_data, (-1, 2))
# #draw lidar
# lidar_img_size = (200, 200, 3)
# lidar_img = np.zeros(lidar_img_size)
# lidar_img[tuple(lidar_data.T)] = (255, 255, 255)
# surface = pygame.surfarray.make_surface(lidar_img)
# self._display.blit(surface, (10, 10))
# if self._map_view is not None:
# array = self._map_view
# array = array[:, :, :3]
# new_window_width = \
# (float(WINDOW_HEIGHT) / float(self._map_shape[0])) * \
# float(self._map_shape[1])
# surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))
# w_pos = int(self._position[0]*(float(WINDOW_HEIGHT)/float(self._map_shape[0])))
# h_pos = int(self._position[1] *(new_window_width/float(self._map_shape[1])))
# pygame.draw.circle(surface, [255, 0, 0, 255], (w_pos, h_pos), 6, 0)
# for agent in self._agent_positions:
# if agent.HasField('vehicle'):
# agent_position = self._map.convert_to_pixel([
# agent.vehicle.transform.location.x,
# agent.vehicle.transform.location.y,
# agent.vehicle.transform.location.z])
# w_pos = int(agent_position[0]*(float(WINDOW_HEIGHT)/float(self._map_shape[0])))
# h_pos = int(agent_position[1] *(new_window_width/float(self._map_shape[1])))
# pygame.draw.circle(surface, [255, 0, 255, 255], (w_pos, h_pos), 4, 0)
# self._display.blit(surface, (WINDOW_WIDTH, 0))
if self._map_view is not None:
array = self._map_view
array = array[:, :, :3]
# print(np.array(array).shape)
# print(self._map_shape)
new_window_width = \
(float(WINDOW_HEIGHT) / float(self._map_shape[0])) * \
float(self._map_shape[1])
surface = pygame.surfarray.make_surface(array.swapaxes(0, 1))
w_pos = int(self._position[0]*(float(WINDOW_HEIGHT)/float(self._map_shape[0])))
h_pos = int(self._position[1] *(new_window_width/float(self._map_shape[1])))
pygame.draw.circle(surface, [255, 0, 0, 255], (w_pos, h_pos), 6, 0)
for agent in self._agent_positions:
if agent.HasField('vehicle'):
agent_position = self._map.convert_to_pixel([
agent.vehicle.transform.location.x,
agent.vehicle.transform.location.y,
agent.vehicle.transform.location.z])
w_pos = int(agent_position[0]*(float(WINDOW_HEIGHT)/float(self._map_shape[0])))
h_pos = int(agent_position[1] *(new_window_width/float(self._map_shape[1])))
pygame.draw.circle(surface, [255, 0, 255, 255], (w_pos, h_pos), 4, 0)
self._display.blit(surface, (WINDOW_WIDTH, 0))
pygame.display.flip()
def main():
argparser = argparse.ArgumentParser(
description='CARLA Manual Control Client')
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host server (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-a', '--autopilot',
action='store_true',
help='enable autopilot')
argparser.add_argument(
'-l', '--lidar',
action='store_true',
help='enable Lidar')
argparser.add_argument(
'-q', '--quality-level',
choices=['Low', 'Epic'],
type=lambda s: s.title(),
default='Epic',
help='graphics quality level, a lower level makes the simulation run considerably faster.')
argparser.add_argument(
'-m', '--map-name',
metavar='M',
default=None,
help='plot the map of the current city (needs to match active map in '
'server, options: Town01 or Town02)')
args = argparser.parse_args()
log_level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
print(__doc__)
wrapper = Carla_Wrapper()
while True:
try:
with make_carla_client(args.host, args.port, timeout=1000) as client:
game = CarlaGame(client, args, wrapper)
game.execute()
break
except TCPConnectionError as error:
logging.error(error)
time.sleep(1)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')