-
Notifications
You must be signed in to change notification settings - Fork 0
/
converter.py
468 lines (391 loc) · 17.5 KB
/
converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
try:
from waymo_open_dataset import dataset_pb2
except ImportError:
raise ImportError(
'Please run inside waymo_easy_convert root dirctory')
import logging
import numpy as np
import os
import sys
import glob
import pickle
from pathlib import Path
from os.path import join, exists, dirname, abspath
from os import makedirs
import random
import argparse
import tensorflow as tf
import matplotlib.image as mpimg
from multiprocessing import Pool
from tqdm import tqdm
from waymo_open_dataset.utils import range_image_utils, transform_utils
from waymo_open_dataset.utils.frame_utils import \
parse_range_image_and_camera_projection
def parse_args():
parser = argparse.ArgumentParser(description='Preprocess Waymo Dataset.')
parser.add_argument('--dataset_path',
help='path to Waymo tfrecord files',
required=True)
parser.add_argument(
'--out_path',
help='Output path to store pickle (default to dataet_path)',
default=None,
required=False)
parser.add_argument('--workers',
help='Number of workers.',
default=16,
type=int)
parser.add_argument('--is_test',
help='True for processing test data (default False)',
default=False,
type=bool)
args = parser.parse_args()
dict_args = vars(args)
for k in dict_args:
v = dict_args[k]
print("{}: {}".format(k, v) if v is not None else "{} not given".
format(k))
return args
class Waymo2KITTI():
"""Waymo to KITTI converter.
This class converts tfrecord files from Waymo dataset to KITTI format.
Args:
dataset_path (str): Directory to load waymo raw data.
save_dir (str): Directory to save data in KITTI format.
workers (str): Number of workers for the parallel process.
is_test (bool): Whether in the test_mode. Default: False.
"""
def __init__(self, dataset_path, save_dir='', workers=8, is_test=False):
self.write_image = True
self.filter_empty_3dboxes = True
self.filter_no_label_zone_points = True
self.classes = ['VEHICLE', 'PEDESTRIAN', 'SIGN', 'CYCLIST']
self.lidar_list = [
'_FRONT', '_FRONT_RIGHT', '_FRONT_LEFT', '_SIDE_RIGHT', '_SIDE_LEFT'
]
self.type_list = ['UNKNOWN', 'VEHICLE',
'PEDESTRIAN', 'SIGN', 'CYCLIST']
self.selected_waymo_classes = self.classes
self.selected_waymo_locations = None
self.dataset_path = dataset_path
self.save_dir = save_dir
self.workers = int(workers)
self.is_test = is_test
self.prefix = ''
self.save_track_id = False
self.tfrecord_files = sorted(
glob.glob(join(self.dataset_path, "*.tfrecord")))
self.label_save_dir = f'{self.save_dir}/label_'
self.label_all_save_dir = f'{self.save_dir}/label_all'
self.image_save_dir = f'{self.save_dir}/image_'
self.calib_save_dir = f'{self.save_dir}/calib'
self.point_cloud_save_dir = f'{self.save_dir}/velodyne'
self.pose_save_dir = f'{self.save_dir}/pose'
self.create_folder()
def create_folder(self):
if not self.is_test:
dir_list1 = [
self.label_all_save_dir, self.calib_save_dir,
self.point_cloud_save_dir, self.pose_save_dir
]
dir_list2 = [self.label_save_dir, self.image_save_dir]
else:
dir_list1 = [
self.calib_save_dir, self.point_cloud_save_dir,
self.pose_save_dir
]
dir_list2 = [self.image_save_dir]
for d in dir_list1:
makedirs(d, exist_ok=True)
for d in dir_list2:
for i in range(5):
makedirs(f'{d}{str(i)}', exist_ok=True)
def convert(self):
print("Start converting ...")
with Pool(self.workers) as p:
p.map(self.process_one, [i for i in range(len(self))])
def process_one(self, file_idx):
path = self.tfrecord_files[file_idx]
dataset = tf.data.TFRecordDataset(path, compression_type='')
for frame_idx, data in enumerate(dataset):
frame = dataset_pb2.Frame()
frame.ParseFromString(bytearray(data.numpy()))
if (self.selected_waymo_locations is not None and
frame.context.stats.location
not in self.selected_waymo_locations):
print("continue")
continue
if self.write_image:
self.save_image(frame, file_idx, frame_idx)
self.save_calib(frame, file_idx, frame_idx)
self.save_lidar(frame, file_idx, frame_idx)
self.save_pose(frame, file_idx, frame_idx)
if not self.is_test:
self.save_label(frame, file_idx, frame_idx)
def __len__(self):
return len(self.tfrecord_files)
def save_image(self, frame, file_idx, frame_idx):
self.prefix = ''
for img in frame.images:
img_path = Path(self.image_save_dir + str(img.name - 1)) / (
self.prefix + str(file_idx).zfill(3) + str(frame_idx).zfill(3) +
'.npy')
image = tf.io.decode_jpeg(img.image).numpy()
np.save(img_path, image)
def save_calib(self, frame, file_idx, frame_idx):
# waymo front camera to kitti reference camera
T_front_cam_to_ref = np.array([[0.0, -1.0, 0.0], [0.0, 0.0, -1.0],
[1.0, 0.0, 0.0]])
camera_calibs = []
R0_rect = [f'{i:e}' for i in np.eye(3).flatten()]
Tr_velo_to_cams = []
calib_context = ''
for camera in frame.context.camera_calibrations:
# extrinsic parameters
T_cam_to_vehicle = np.array(camera.extrinsic.transform).reshape(
4, 4)
T_vehicle_to_cam = np.linalg.inv(T_cam_to_vehicle)
Tr_velo_to_cam = \
self.cart_to_homo(T_front_cam_to_ref) @ T_vehicle_to_cam
if camera.name == 1: # FRONT = 1, see dataset.proto for details
self.T_velo_to_front_cam = Tr_velo_to_cam.copy()
Tr_velo_to_cam = Tr_velo_to_cam[:3, :].reshape((12,))
Tr_velo_to_cams.append([f'{i:e}' for i in Tr_velo_to_cam])
# intrinsic parameters
camera_calib = np.zeros((3, 4))
camera_calib[0, 0] = camera.intrinsic[0]
camera_calib[1, 1] = camera.intrinsic[1]
camera_calib[0, 2] = camera.intrinsic[2]
camera_calib[1, 2] = camera.intrinsic[3]
camera_calib[2, 2] = 1
camera_calib = list(camera_calib.reshape(12))
camera_calib = [f'{i:e}' for i in camera_calib]
camera_calibs.append(camera_calib)
# all camera ids are saved as id-1 in the result because
# camera 0 is unknown in the proto
for i in range(5):
calib_context += 'P' + str(i) + ': ' + \
' '.join(camera_calibs[i]) + '\n'
calib_context += 'R0_rect' + ': ' + ' '.join(R0_rect) + '\n'
for i in range(5):
calib_context += 'Tr_velo_to_cam_' + str(i) + ': ' + \
' '.join(Tr_velo_to_cams[i]) + '\n'
with open(
f'{self.calib_save_dir}/{self.prefix}' +
f'{str(file_idx).zfill(3)}{str(frame_idx).zfill(3)}.txt',
'w+') as fp_calib:
fp_calib.write(calib_context)
fp_calib.close()
def save_pose(self, frame, file_idx, frame_idx):
pose = np.array(frame.pose.transform).reshape(4, 4)
np.savetxt(
join(f'{self.pose_save_dir}/{self.prefix}' +
f'{str(file_idx).zfill(3)}{str(frame_idx).zfill(3)}.txt'),
pose)
def save_label(self, frame, file_idx, frame_idx):
fp_label_all = open(
f'{self.label_all_save_dir}/{self.prefix}' +
f'{str(file_idx).zfill(3)}{str(frame_idx).zfill(3)}.txt', 'w+')
id_to_bbox = dict()
id_to_name = dict()
for labels in frame.projected_lidar_labels:
name = labels.name
for label in labels.labels:
# TODO: need a workaround as bbox may not belong to front cam
bbox = [
label.box.center_x - label.box.length / 2,
label.box.center_y - label.box.width / 2,
label.box.center_x + label.box.length / 2,
label.box.center_y + label.box.width / 2
]
id_to_bbox[label.id] = bbox
id_to_name[label.id] = name - 1
for obj in frame.laser_labels:
bounding_box = None
name = None
id = obj.id
for lidar in self.lidar_list:
if id + lidar in id_to_bbox:
bounding_box = id_to_bbox.get(id + lidar)
name = str(id_to_name.get(id + lidar))
break
if bounding_box is None or name is None:
name = '0'
bounding_box = (0, 0, 0, 0)
my_type = self.type_list[obj.type]
if my_type not in self.selected_waymo_classes:
continue
# if self.filter_empty_3dboxes and obj.num_lidar_points_in_box < 1:
# continue
height = obj.box.height
width = obj.box.width
length = obj.box.length
x = obj.box.center_x
y = obj.box.center_y
z = obj.box.center_z
# # project bounding box to the virtual reference frame
# pt_ref = self.T_velo_to_front_cam @ \
# np.array([x, y, z, 1]).reshape((4, 1))
# x, y, z, _ = pt_ref.flatten().tolist()
rotation_y = -obj.box.heading - np.pi / 2
track_id = obj.id
# not available
truncated = 0
occluded = 0
alpha = -10
line = my_type + \
' {} {} {} {} {} {} {} {} {} {} {} {} {} {}\n'.format(
round(truncated, 2), occluded, round(alpha, 2),
round(bounding_box[0], 2), round(bounding_box[1], 2),
round(bounding_box[2], 2), round(bounding_box[3], 2),
round(height, 2), round(width, 2), round(length, 2),
round(x, 2), round(y, 2), round(z, 2),
round(rotation_y, 2))
if self.save_track_id:
line_all = line[:-1] + ' ' + name + ' ' + track_id + '\n'
else:
line_all = line[:-1] + ' ' + name + '\n'
fp_label = open(
f'{self.label_save_dir}{name}/{self.prefix}' +
f'{str(file_idx).zfill(3)}{str(frame_idx).zfill(3)}.txt', 'a')
fp_label.write(line)
fp_label.close()
fp_label_all.write(line_all)
fp_label_all.close()
def save_lidar(self, frame, file_idx, frame_idx):
range_images, camera_projections, seg_labels, range_image_top_pose = parse_range_image_and_camera_projection(
frame)
# First return
points_0, cp_points_0, intensity_0, elongation_0 = \
self.convert_range_image_to_point_cloud(
frame,
range_images,
camera_projections,
range_image_top_pose,
ri_index=0
)
points_0 = np.concatenate(points_0, axis=0)
intensity_0 = np.concatenate(intensity_0, axis=0)
elongation_0 = np.concatenate(elongation_0, axis=0)
# Second return
points_1, cp_points_1, intensity_1, elongation_1 = \
self.convert_range_image_to_point_cloud(
frame,
range_images,
camera_projections,
range_image_top_pose,
ri_index=1
)
points_1 = np.concatenate(points_1, axis=0)
intensity_1 = np.concatenate(intensity_1, axis=0)
elongation_1 = np.concatenate(elongation_1, axis=0)
points = np.concatenate([points_0, points_1], axis=0)
intensity = np.concatenate([intensity_0, intensity_1], axis=0)
elongation = np.concatenate([elongation_0, elongation_1], axis=0)
timestamp = frame.timestamp_micros * np.ones_like(intensity)
# concatenate x,y,z, intensity, elongation, timestamp (6-dim)
point_cloud = np.column_stack(
(points, intensity, elongation, timestamp))
pc_path = f'{self.point_cloud_save_dir}/{self.prefix}' + \
f'{str(file_idx).zfill(3)}{str(frame_idx).zfill(3)}.bin'
point_cloud.astype(np.float32).tofile(pc_path)
def convert_range_image_to_point_cloud(self,
frame,
range_images,
camera_projections,
range_image_top_pose,
ri_index=0):
calibrations = sorted(frame.context.laser_calibrations,
key=lambda c: c.name)
points = []
cp_points = []
intensity = []
elongation = []
frame_pose = tf.convert_to_tensor(
value=np.reshape(np.array(frame.pose.transform), [4, 4]))
# [H, W, 6]
range_image_top_pose_tensor = tf.reshape(
tf.convert_to_tensor(value=range_image_top_pose.data),
range_image_top_pose.shape.dims)
# [H, W, 3, 3]
range_image_top_pose_tensor_rotation = \
transform_utils.get_rotation_matrix(
range_image_top_pose_tensor[..., 0],
range_image_top_pose_tensor[..., 1],
range_image_top_pose_tensor[..., 2])
range_image_top_pose_tensor_translation = \
range_image_top_pose_tensor[..., 3:]
range_image_top_pose_tensor = transform_utils.get_transform(
range_image_top_pose_tensor_rotation,
range_image_top_pose_tensor_translation)
for c in calibrations:
range_image = range_images[c.name][ri_index]
if len(c.beam_inclinations) == 0:
beam_inclinations = range_image_utils.compute_inclination(
tf.constant(
[c.beam_inclination_min, c.beam_inclination_max]),
height=range_image.shape.dims[0])
else:
beam_inclinations = tf.constant(c.beam_inclinations)
beam_inclinations = tf.reverse(beam_inclinations, axis=[-1])
extrinsic = np.reshape(np.array(c.extrinsic.transform), [4, 4])
range_image_tensor = tf.reshape(
tf.convert_to_tensor(value=range_image.data),
range_image.shape.dims)
pixel_pose_local = None
frame_pose_local = None
if c.name == dataset_pb2.LaserName.TOP:
pixel_pose_local = range_image_top_pose_tensor
pixel_pose_local = tf.expand_dims(pixel_pose_local, axis=0)
frame_pose_local = tf.expand_dims(frame_pose, axis=0)
range_image_mask = range_image_tensor[..., 0] > 0
if self.filter_no_label_zone_points:
nlz_mask = range_image_tensor[..., 3] != 1.0 # 1.0: in NLZ
range_image_mask = range_image_mask & nlz_mask
range_image_cartesian = \
range_image_utils.extract_point_cloud_from_range_image(
tf.expand_dims(range_image_tensor[..., 0], axis=0),
tf.expand_dims(extrinsic, axis=0),
tf.expand_dims(tf.convert_to_tensor(
value=beam_inclinations), axis=0),
pixel_pose=pixel_pose_local,
frame_pose=frame_pose_local)
range_image_cartesian = tf.squeeze(range_image_cartesian, axis=0)
points_tensor = tf.gather_nd(range_image_cartesian,
tf.compat.v1.where(range_image_mask))
cp = camera_projections[c.name][ri_index]
cp_tensor = tf.reshape(tf.convert_to_tensor(value=cp.data),
cp.shape.dims)
cp_points_tensor = tf.gather_nd(
cp_tensor, tf.compat.v1.where(range_image_mask))
points.append(points_tensor.numpy())
cp_points.append(cp_points_tensor.numpy())
intensity_tensor = tf.gather_nd(range_image_tensor[..., 1],
tf.where(range_image_mask))
intensity.append(intensity_tensor.numpy())
elongation_tensor = tf.gather_nd(range_image_tensor[..., 2],
tf.where(range_image_mask))
elongation.append(elongation_tensor.numpy())
return points, cp_points, intensity, elongation
@staticmethod
def cart_to_homo(mat):
ret = np.eye(4)
if mat.shape == (3, 3):
ret[:3, :3] = mat
elif mat.shape == (3, 4):
ret[:3, :] = mat
else:
raise ValueError(mat.shape)
return ret
if __name__ == '__main__':
logging.basicConfig(
level=logging.INFO,
format='%(levelname)s - %(asctime)s - %(module)s - %(message)s',
)
args = parse_args()
out_path = args.out_path
if out_path is None:
args.out_path = args.dataset_path
converter = Waymo2KITTI(args.dataset_path, args.out_path, args.workers,
args.is_test)
converter.convert()