forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 1
/
tripack.html
318 lines (284 loc) · 8.68 KB
/
tripack.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
<html>
<head>
<title>
TRIPACK - Constrained Delaunay Triangulation
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
TRIPACK <br> Constrained Delaunay Triangulation
</h1>
<hr>
<p>
<b>TRIPACK</b>
is a FORTRAN90 library which
computes the Delaunay triangulation of a set of points in the plane.
</p>
<p>
<b>TRIPACK</b> has the unusual option of allowing the user to
specify constraint curves to be included in the triangulation.
</p>
<p>
<b>TRIPACK</b> is primarily a FORTRAN90 "translation" of the
original FORTRAN77 program written by Robert Renka, and
published in the ACM Transactions on Mathematical Software.
</p>
<p>
<b>TRIPACK</b> is ACM TOMS algorithm 751. The text of the
original FORTRAN77 program is available online
through ACM:
<a href = "http://www.acm.org/pubs/calgo/">
http://www.acm.org/pubs/calgo</a>
or NETLIB:
<a href = "http://www.netlib.org/toms/index.html">
http://www.netlib.org/toms/index.html</a>.
</p>
<p>
Specifically, the directory
<a href = "http://www.netlib.org/toms/751">
http://www.netlib.org/toms/751</a>
contains the original, true, correct version of ACM TOMS Algorithm 751.
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>TRIPACK</b> is available in
<a href = "../../f77_src/tripack/tripack.html">a FORTRAN77 version</a> and
<a href = "../../f_src/tripack/tripack.html">a FORTRAN90 version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/delaunay_lmap_2d/delaunay_lmap_2d.html">
DELAUNAY_LMAP_2D</a>,
a FORTRAN90 program which
computes the Delaunay triangulation of points in the plane subject to a linear mapping.
</p>
<p>
<a href = "../../f_src/geompack/geompack.html">
GEOMPACK</a>,
a FORTRAN90 library which
can compute Delaunay triangulations Voronoi diagrams and other information,
written by Barry Joe.
</p>
<p>
<a href = "../../f_src/stripack/stripack.html">
STRIPACK</a>,
a FORTRAN90 library which
computes the Delaunay triangulation or Voronoi diagram of points on a sphere.
</p>
<p>
<a href = "../../f_src/table_delaunay/table_delaunay.html">
TABLE_DELAUNAY</a>,
a FORTRAN90 program which
reads a file of point coordinates in the TABLE format and writes out
the Delaunay triangulation.
</p>
<p>
<a href = "../../f_src/triangulation/triangulation.html">
TRIANGULATION</a>,
a FORTRAN90 library which
performs various operations on order 3 ("linear") or order 6 ("quadratic") triangulations.
</p>
<p>
<a href = "../../f_src/triangulation_plot/triangulation_plot.html">
TRIANGULATION_PLOT</a>,
a FORTRAN90 program which
makes a PostScript image of a triangulation of points.
</p>
<p>
<a href = "../../f_src/triangulation_triangle_neighbors/triangulation_triangle_neighbors.html">
TRIANGULATION_TRIANGLE_NEIGHBORS</a>,
a FORTRAN90 program which
reads data defining a triangulation, determines the neighboring
triangles of each triangle, and writes that information to a file.
</p>
<h3 align = "center">
Author:
</h3>
<p>
Robert Renka
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Franz Aurenhammer,<br>
Voronoi diagrams -
a study of a fundamental geometric data structure,<br>
ACM Computing Surveys,<br>
Volume 23, pages 345-405, September 1991.
</li>
<li>
Robert Renka,<br>
Algorithm 751:
TRIPACK, A Constrained Two-Dimensional Delaunay Triangulation
Package,<br>
ACM Transactions on Mathematical Software,<br>
Volume 22, Number 1, 1996.
</li>
<li>
Brian Wichmann, David Hill,<br>
An Efficient and Portable Pseudo-random Number Generator,<br>
Applied Statistics,<br>
Volume 31, Number 2, 1982, pages 188-190.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "tripack.f90">tripack.f90</a>, the source code.
</li>
<li>
<a href = "tripack.sh">tripack.sh</a>, commands to
compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "tripack_prb.f90">tripack_prb.f90</a>, a sample problem.
</li>
<li>
<a href = "tripack_prb.sh">tripack_prb.sh</a>, commands
to compile, link and run the sample problem.
</li>
<li>
<a href = "tripack_prb_output.txt">tripack_prb_output.txt</a>, sample problem
output.
</li>
<li>
<a href = "tripack_prb.png">tripack_prb.png</a>,
a <a href = "../../data/png/png.html">PNG</a>
image of the triangulation.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>ADDCST</b> adds constraint curves to a Delaunay triangulation.
</li>
<li>
<b>ADDNOD</b> adds a node to a triangulation.
</li>
<li>
<b>AREAP</b> computes the signed area of a polygonal curve.
</li>
<li>
<b>BDYADD</b> adds a boundary node to a triangulation.
</li>
<li>
<b>BNODES</b> returns a list of the boundary nodes.
</li>
<li>
<b>CIRCUM</b> determines the circumcenter (and more) of a triangle.
</li>
<li>
<b>CRTRI</b> determines if a triangle lies in a constraint region.
</li>
<li>
<b>DELARC</b> deletes a boundary arc from a triangulation.
</li>
<li>
<b>DELNB</b> deletes a neighbor from an adjacency list.
</li>
<li>
<b>DELNOD</b> deletes a node from a triangulation.
</li>
<li>
<b>EDGE</b> swaps arcs to force two nodes to be adjacent.
</li>
<li>
<b>GETNP</b> sets the next nearest node to a given node.
</li>
<li>
<b>INDXCC</b> returns the index of an exterior constraint curve.
</li>
<li>
<b>INSERT</b> inserts K as a neighbor of N1.
</li>
<li>
<b>INTADD</b> adds an interior point to a triangulation.
</li>
<li>
<b>INTSEC</b> determines if two line segments intersect.
</li>
<li>
<b>JRAND</b> returns a uniformly distributed random integer between 1 and N.
</li>
<li>
<b>LEFT</b> determines whether a node is to the left of a line.
</li>
<li>
<b>LSTPTR</b> returns the index of NB in the adjacency list for N0.
</li>
<li>
<b>NBCNT</b> returns the number of neighbors of a node.
</li>
<li>
<b>NEARND</b> finds the nearest triangulation node to a point.
</li>
<li>
<b>OPTIM</b> optimizes the quadrilateral portion of a triangulation.
</li>
<li>
<b>STORE</b> forces its argument to be stored.
</li>
<li>
<b>SWAP</b> adjusts a triangulation by swapping a diagonal arc.
</li>
<li>
<b>SWPTST</b> applies the circumcircle test to a quadrilateral.
</li>
<li>
<b>TRFIND</b> locates a point relative to a triangulation.
</li>
<li>
<b>TRLIST</b> converts a triangulation to triangle list form.
</li>
<li>
<b>TRLPRT</b> prints the triangles in a triangulation.
</li>
<li>
<b>TRMESH</b> triangulates a set of points in the plane.
</li>
<li>
<b>TRMSHR</b> triangulates logically rectangular data.
</li>
<li>
<b>TRMTST</b> tests a data structure representing a Delaunay triangulation.
</li>
<li>
<b>TRPLOT</b> plots a triangulation in an EPS file.
</li>
<li>
<b>TRPRNT</b> prints information about a planar triangulation.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 15 December 2005.
</i>
</body>
</html>