forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 1
/
ps_lg_align.html
329 lines (295 loc) · 10.2 KB
/
ps_lg_align.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
<html>
<head>
<title>
PS_LG_ALIGN - Profile/Sequence Local Gap Alignment
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
PS_LG_ALIGN <br> Profile/Sequence Local Gap Alignment
</h1>
<hr>
<p>
<b>PS_LG_ALIGN</b>
is a FORTRAN90 library which
implements some of the string
alignment algorithms described in the reference <b>[Chao]</b>.
</p>
<p>
These
algorithms carry out the computation in <I>linear space</I>, and compute
not just the optimal alignment score, but also the corresponding optimal
alignment. The alignments considered are local, that is, only
contiguous portion of the sequence is mapped to a portion of the profile.
Gaps in the alignment are assigned an affine gap penalty.
</p>
<p>
It's important to be able to compute alignments using "linear space",
that is, just a few vectors whose length <b>N</b> is equal to that
of a typical string. A quadratic algorithm would require a two
dimensional array of total dimension <b>N*N</b>. Realistic alignment
problems can involve strings of <b>N</b>=100,000 elements or more,
so a quadratic algorithm would be expensive or impossible to use.
</p>
<p>
The optimal alignment score is computed without explicitly constructing
the corresponding alignment. So a major feature of the algorithms is
how to backtrack from the score to retrieve the alignment. It is a matter
of some difficulty to recover the matching, particularly if the best
score was calculated with a linear space algorithm, which discards a
great deal of intermediate information. However, the linear space
algorithm implemented here can also compute the optimal matching, based
on the idea of a recursive subdivision of the problem.
</p>
<p>
This set of algorithms does not actually match a pair of sequences,
but rather matches a sequence to a "profile". A profile is constructed
based on information from many sequences, and can be thought of as
a "generalized sequence", or a set of indices, where for each index
we specify the likelihood that each possible nucleic acid will occur.
These likelihoods can then be used to score the alignments we consider
with the new candidate sequence.
</p>
<p>
This set of routines assumes that an insertion or deletion of length
<b>K</b> is penalized using an "affine gap penalty formula" of the form:
<blockquote>
Penalty = Gap_Open + K * Gap_Extend
</blockquote>
This choice of penalty function has a major effect on the form
of the matching algorithms, particularly in the linear space case.
For the profile problems covered by these algorithms, the gap penalties
are further adjusted using profile-position percentages specified by
the user.
</p>
<p>
Routines that use quadratic space are included as well, so the algorithms
can be compared for storage, speed, and correctness.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/ps_gg_align/ps_gg_align.html">
PS_GG_ALIGN</a>,
a FORTRAN90 library which
implements a profile/sequence global alignment using an affine gap penalty.
</p>
<p>
<a href = "../../f_src/ps_qg_align/ps_qg_align.html">
PS_QG_ALIGN</a>,
a FORTRAN90 library which
implements a profile/sequence quasiglobal alignment using an affine gap penalty.
</p>
<p>
<a href = "../../f_src/ss_gd_align/ss_gd_align.html">
SS_GD_ALIGN</a>,
a FORTRAN90 library which
globally aligns two sequences using a distance matrix.
</p>
<p>
<a href = "../../f_src/ss_gg_align/ss_gg_align.html">
SS_GG_ALIGN</a>,
a FORTRAN90 library which
globally aligns two sequences using an affine gap penalty.
</p>
<p>
<a href = "../../f_src/ss_lg_align/ss_lg_align.html">
SS_LG_ALIGN</a>,
a FORTRAN90 library which
locally aligns two sequences using an affine gap penalty.
</p>
<p>
<a href = "../../f_src/ss_qg_align/ss_qg_align.html">
SS_QG_ALIGN</a>,
a FORTRAN90 library which
quasi-globally aligns two sequences using an affine gap penalty.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Kun-Mao Chao, Ross Hardison, Webb Miller,<br>
Recent Developments in Linear-Space Alignment Methods: A Survey,<br>
Journal of Computational Biology, <br>
Volume 1, Number 4, 1994, pages 271-291.
</li>
<li>
Eugene Myers and Webb Miller,<br>
Optimal Alignments in Linear Space,<br>
CABIOS, volume 4, number 1, 1988, pages 11-17.
</li>
<li>
Michael Waterman,<br>
Introduction to Computational Biology,<br>
Chapman and Hall, 1995.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "ps_lg_align.f90">ps_lg_align.f90</a>, the source code;
</li>
<li>
<a href = "ps_lg_align.sh">ps_lg_align.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "profile.txt">profile.txt</a>, a sample profile scoring
data file.
</li>
<li>
<a href = "ps_lg_align_prb.f90">ps_lg_align_prb.f90</a>, a sample
program to read a profile scoring data file.
</li>
<li>
<a href = "ps_lg_align_prb.sh">ps_lg_align_prb.sh</a>,
commands to compile, link and run the sample program.
</li>
<li>
<a href = "ps_lg_align_prb_output.txt">ps_lg_align_prb_output.txt</a>, output
from running the sample problem.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>A_INDEX</b> sets up a reverse index for the amino acid codes.
</li>
<li>
<b>A_TO_I4</b> returns the index of an alphabetic character.
</li>
<li>
<b>CH_CAP</b> capitalizes a single character.
</li>
<li>
<b>I4_SWAP</b> switches two integer values.
</li>
<li>
<b>I4_TO_A</b> returns the I-th alphabetic character.
</li>
<li>
<b>I4VEC_REVERSE</b> reverses the elements of an integer vector.
</li>
<li>
<b>I4VEC2_COMPARE</b> compares pairs of integers stored in two vectors.
</li>
<li>
<b>I4VEC2_PRINT</b> prints a pair of integer vectors.
</li>
<li>
<b>I4VEC2_SORT_A</b> ascending sorts a vector of pairs of integers.
</li>
<li>
<b>PROFILE_SCORE_PRINT</b> prints profile scoring data.
</li>
<li>
<b>PROFILE_SCORE_READ</b> reads profile scoring data from a file.
</li>
<li>
<b>PROFILE_SCORE_READ2</b> returns a small amount of information from a profile.
</li>
<li>
<b>PS_GG_BSL</b> determines a global gap backward alignment score in linear space.
</li>
<li>
<b>PS_GG_FSL</b> determines a global gap forward alignment score in linear space.
</li>
<li>
<b>PS_LG_BPQ</b> determines a local gap backward alignment path in quadratic space.
</li>
<li>
<b>PS_LG_BSL</b> determines a local gap backward alignment score in linear space.
</li>
<li>
<b>PS_LG_BSQ</b> determines a local gap backward alignment score in quadratic space.
</li>
<li>
<b>PS_LG_CORNERS</b> determines the "corners" of an optimal local alignment.
</li>
<li>
<b>PS_LG_FPQ</b> determines a local gap forward alignment path in quadratic space.
</li>
<li>
<b>PS_LG_FSL</b> determines a local gap forward alignment score in linear space.
</li>
<li>
<b>PS_LG_FSQ</b> determines a local gap forward alignment score in quadratic space.
</li>
<li>
<b>PS_LG_MATCH_PRINT</b> prints a local gap alignment.
</li>
<li>
<b>PS_LG_RPL</b> determines a local gap recursive alignment path in linear space.
</li>
<li>
<b>PS_LG_RPL_POP</b> pops the data describing a subproblem off of the stack.
</li>
<li>
<b>PS_LG_RPL_PUSH</b> pushes the data describing a subproblem onto the stack.
</li>
<li>
<b>R4MAT_IMAX</b> returns the location of the maximum of a real M by N matrix.
</li>
<li>
<b>R4VEC2_SUM_IMAX</b> returns the index of the maximum sum of two real vectors.
</li>
<li>
<b>S_EQI</b> is a case insensitive comparison of two strings for equality.
</li>
<li>
<b>S_TO_CHVEC</b> converts a string to a character vector.
</li>
<li>
<b>S_TO_I4</b> reads an integer value from a string.
</li>
<li>
<b>SORT_HEAP_EXTERNAL</b> externally sorts a list of items into linear order.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
<li>
<b>WORD_LAST_READ</b> returns the last word from a string.
</li>
<li>
<b>WORD_NEXT_READ</b> "reads" words from a string, one at a time.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 29 December 2007.
</i>
<!-- John Burkardt -->
</body>
</html>