forked from johannesgerer/jburkardt-f
-
Notifications
You must be signed in to change notification settings - Fork 1
/
fd1d_heat_explicit.html
297 lines (258 loc) · 8.22 KB
/
fd1d_heat_explicit.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
<html>
<head>
<title>
FD1D_HEAT_EXPLICIT - TIme Dependent 1D Heat Equation, Finite Difference, Explicit Time Stepping
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
FD1D_HEAT_EXPLICIT <br>
Finite Difference Solution of the<br>
Time Dependent 1D Heat Equation<br>
using Explicit Time Stepping
</h1>
<hr>
<p>
<b>FD1D_HEAT_EXPLICIT</b>
is a FORTRAN90 library which
solves the time-dependent 1D heat equation, using the finite difference
method in space, and an explicit version of the method of lines to handle
integration in time.
</p>
<p>
This program solves
<pre>
dUdT - k * d2UdX2 = F(X,T)
</pre>
over the interval [A,B] with boundary conditions
<pre>
U(A,T) = UA(T),
U(B,T) = UB(T),
</pre>
over the time interval [T0,T1] with initial conditions
<pre>
U(X,T0) = U0(X)
</pre>
</p>
<p>
A second order finite difference is used to approximate the
second derivative in space.
</p>
<p>
The solver applies an
explicit forward Euler approximation to the first derivative in time.
</p>
<p>
The resulting finite difference form can be written as
<pre>
U(X,T+dt) - U(X,T) ( U(X-dx,T) - 2 U(X,T) + U(X+dx,T) )
------------------ = F(X,T) + k * ------------------------------------
dt dx * dx
</pre>
or, assuming we have solved for all values of U at time T, we have
<pre>
U(X,T+dt) = U(X,T)
+ dt * ( F(X,T)
+ k * ( U(X-dx,T) - 2 U(X,T) + U(X+dx,T) ) / dx / dx )
</pre>
</p>
<p>
Other approaches would involve a fully implicit backward Euler approximation or
the Crank-Nicholson approximation. These latter two methods have
improved stability.
</p>
<p>
A second worthwhile change would be to replace the constant
heat conductivity <b>K</b> by a function <b>K(X,T)</b>. The
spatial variation would allow for the modeling of a region
divided into subregions of different materials.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>FD1D_HEAT_EXPLICIT</b> is available in
<a href = "../../c_src/fd1d_heat_explicit/fd1d_heat_explicit.html">a C version</a> and
<a href = "../../cpp_src/fd1d_heat_explicit/fd1d_heat_explicit.html">a C++ version</a> and
<a href = "../../f77_src/fd1d_heat_explicit/fd1d_heat_explicit.html">a FORTRAN77 version</a> and
<a href = "../../f_src/fd1d_heat_explicit/fd1d_heat_explicit.html">a FORTRAN90 version</a> and
<a href = "../../m_src/fd1d_heat_explicit/fd1d_heat_explicit.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/fd1d_burgers_lax/fd1d_burgers_lax.html">
FD1D_BURGERS_LAX</a>,
a FORTRAN90 program which
applies the finite difference method and the Lax-Wendroff method
to solve the non-viscous time-dependent Burgers equation
in one spatial dimension.
</p>
<p>
<a href = "../../f_src/fd1d_burgers_leap/fd1d_burgers_leap.html">
FD1D_BURGERS_LEAP</a>,
a FORTRAN90 program which
applies the finite difference method and the leapfrog approach
to solve the non-viscous time-dependent Burgers equation in one spatial dimension.
</p>
<p>
<a href = "../../f_src/fd1d_bvp/fd1d_bvp.html">
FD1D_BVP</a>,
a FORTRAN90 program which
applies the finite difference method
to a two point boundary value problem in one spatial dimension.
</p>
<p>
<a href = "../../f_src/fd1d_heat_implicit/fd1d_heat_implicit.html">
FD1D_HEAT_IMPLICIT</a>,
a FORTRAN90 program which
uses the finite difference method and implicit time stepping
to solve the time dependent heat equation in 1D.
</p>
<p>
<a href = "../../f_src/fd1d_heat_steady/fd1d_heat_steady.html">
FD1D_HEAT_STEADY</a>,
a FORTRAN90 program which
uses the finite difference method to solve the steady (time independent)
heat equation in 1D.
</p>
<p>
<a href = "../../f_src/fd1d_predator_prey/fd1d_predator_prey.html">
FD1D_PREDATOR_PREY</a>,
a FORTRAN90 program which
uses finite differences to solve a 1D predator prey problem.
</p>
<p>
<a href = "../../f_src/fd1d_wave/fd1d_wave.html">
FD1D_WAVE</a>,
a FORTRAN90 program which
applies the finite difference method to solve the time-dependent
wave equation utt = c * uxx in one spatial dimension.
</p>
<p>
<a href = "../../f_src/fem1d/fem1d.html">
FEM1D</a>,
a FORTRAN90 program which
applies the finite element
method, with piecewise linear basis functions, to a linear
two point boundary value problem;
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
George Lindfield, John Penny,<br>
Numerical Methods Using MATLAB,<br>
Second Edition,<br>
Prentice Hall, 1999,<br>
ISBN: 0-13-012641-1,<br>
LC: QA297.P45.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "fd1d_heat_explicit.f90">fd1d_heat_explicit.f90</a>, the source code.
</li>
<li>
<a href = "fd1d_heat_explicit.sh">fd1d_heat_explicit.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "fd1d_heat_explicit_prb.f90">fd1d_heat_explicit_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "fd1d_heat_explicit_prb.sh">fd1d_heat_explicit_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "fd1d_heat_explicit_prb_output.txt">fd1d_heat_explicit_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
<b>TEST01</b> runs with initial condition 50 everywhere, boundary conditions
of 90 on the left and 70 on the right, and no right hand side source term.
<ul>
<li>
<a href = "plot_test01.png">plot_test01.png</a>,
a PNG image of the solution, using the MATLAB MESH command
to emphasize the method of lines approach underlying the solution.
</li>
<li>
<a href = "h_test01.txt">h_test01.txt</a>,
the computed H data.
</li>
<li>
<a href = "t_test01.txt">t_test01.txt</a>,
the T data.
</li>
<li>
<a href = "x_test01.txt">x_test01.txt</a>,
the X data.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>FD1D_HEAT_EXPLICIT:</b> Finite difference solution of 1D heat equation.
</li>
<li>
<b>FD1D_HEAT_EXPLICIT_CFL:</b> compute the Courant-Friedrichs-Loewy coefficient.
</li>
<li>
<b>GET_UNIT</b> returns a free FORTRAN unit number.
</li>
<li>
<b>R8MAT_WRITE</b> writes an R8MAT file.
</li>
<li>
<b>R8VEC_LINSPACE</b> creates a vector of linearly spaced values.
</li>
<li>
<b>R8VEC_WRITE</b> writes an R8VEC file.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 25 January 2012.
</i>
<!-- John Burkardt -->
</body>
</html>