forked from chatchat-space/Langchain-Chatchat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_config.py
194 lines (164 loc) · 7.03 KB
/
model_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch.cuda
import torch.backends
import os
import logging
import uuid
LOG_FORMAT = "%(levelname) -5s %(asctime)s" "-1d: %(message)s"
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logging.basicConfig(format=LOG_FORMAT)
# 在以下字典中修改属性值,以指定本地embedding模型存储位置
# 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese"
# 此处请写绝对路径
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec-base": "shibing624/text2vec-base-chinese",
"text2vec": "GanymedeNil/text2vec-large-chinese",
"m3e-small": "moka-ai/m3e-small",
"m3e-base": "moka-ai/m3e-base",
}
# Embedding model name
EMBEDDING_MODEL = "text2vec"
# Embedding running device
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# supported LLM models
# llm_model_dict 处理了loader的一些预设行为,如加载位置,模型名称,模型处理器实例
# 在以下字典中修改属性值,以指定本地 LLM 模型存储位置
# 如将 "chatglm-6b" 的 "local_model_path" 由 None 修改为 "User/Downloads/chatglm-6b"
# 此处请写绝对路径
llm_model_dict = {
"chatglm-6b-int4-qe": {
"name": "chatglm-6b-int4-qe",
"pretrained_model_name": "THUDM/chatglm-6b-int4-qe",
"local_model_path": None,
"provides": "ChatGLM"
},
"chatglm-6b-int4": {
"name": "chatglm-6b-int4",
"pretrained_model_name": "THUDM/chatglm-6b-int4",
"local_model_path": None,
"provides": "ChatGLM"
},
"chatglm-6b-int8": {
"name": "chatglm-6b-int8",
"pretrained_model_name": "THUDM/chatglm-6b-int8",
"local_model_path": None,
"provides": "ChatGLM"
},
"chatglm-6b": {
"name": "chatglm-6b",
"pretrained_model_name": "THUDM/chatglm-6b",
"local_model_path": None,
"provides": "ChatGLM"
},
"chatglm2-6b": {
"name": "chatglm2-6b",
"pretrained_model_name": "THUDM/chatglm2-6b",
"local_model_path": None,
"provides": "ChatGLM"
},
"chatyuan": {
"name": "chatyuan",
"pretrained_model_name": "ClueAI/ChatYuan-large-v2",
"local_model_path": None,
"provides": None
},
"moss": {
"name": "moss",
"pretrained_model_name": "fnlp/moss-moon-003-sft",
"local_model_path": None,
"provides": "MOSSLLM"
},
"vicuna-13b-hf": {
"name": "vicuna-13b-hf",
"pretrained_model_name": "vicuna-13b-hf",
"local_model_path": None,
"provides": "LLamaLLM"
},
# 通过 fastchat 调用的模型请参考如下格式
"fastchat-chatglm-6b": {
"name": "chatglm-6b", # "name"修改为fastchat服务中的"model_name"
"pretrained_model_name": "chatglm-6b",
"local_model_path": None,
"provides": "FastChatOpenAILLM", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLM"
"api_base_url": "http://localhost:8000/v1" # "name"修改为fastchat服务中的"api_base_url"
},
"fastchat-chatglm2-6b": {
"name": "chatglm2-6b", # "name"修改为fastchat服务中的"model_name"
"pretrained_model_name": "chatglm2-6b",
"local_model_path": None,
"provides": "FastChatOpenAILLM", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLM"
"api_base_url": "http://localhost:8000/v1" # "name"修改为fastchat服务中的"api_base_url"
},
# 通过 fastchat 调用的模型请参考如下格式
"fastchat-vicuna-13b-hf": {
"name": "vicuna-13b-hf", # "name"修改为fastchat服务中的"model_name"
"pretrained_model_name": "vicuna-13b-hf",
"local_model_path": None,
"provides": "FastChatOpenAILLM", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLM"
"api_base_url": "http://localhost:8000/v1" # "name"修改为fastchat服务中的"api_base_url"
},
}
# LLM 名称
LLM_MODEL = "chatglm-6b"
# 量化加载8bit 模型
LOAD_IN_8BIT = False
# Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.
BF16 = False
# 本地lora存放的位置
LORA_DIR = "loras/"
# LLM lora path,默认为空,如果有请直接指定文件夹路径
LLM_LORA_PATH = ""
USE_LORA = True if LLM_LORA_PATH else False
# LLM streaming reponse
STREAMING = True
# Use p-tuning-v2 PrefixEncoder
USE_PTUNING_V2 = False
# LLM running device
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# 知识库默认存储路径
KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge_base")
# 基于上下文的prompt模版,请务必保留"{question}"和"{context}"
PROMPT_TEMPLATE = """已知信息:
{context}
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 问题是:{question}"""
# 缓存知识库数量
CACHED_VS_NUM = 1
# 文本分句长度
SENTENCE_SIZE = 100
# 匹配后单段上下文长度
CHUNK_SIZE = 250
# 传入LLM的历史记录长度
LLM_HISTORY_LEN = 3
# 知识库检索时返回的匹配内容条数
VECTOR_SEARCH_TOP_K = 5
# 知识检索内容相关度 Score, 数值范围约为0-1100,如果为0,则不生效,经测试设置为小于500时,匹配结果更精准
VECTOR_SEARCH_SCORE_THRESHOLD = 0
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
FLAG_USER_NAME = uuid.uuid4().hex
logger.info(f"""
loading model config
llm device: {LLM_DEVICE}
embedding device: {EMBEDDING_DEVICE}
dir: {os.path.dirname(os.path.dirname(__file__))}
flagging username: {FLAG_USER_NAME}
""")
# 是否开启跨域,默认为False,如果需要开启,请设置为True
# is open cross domain
OPEN_CROSS_DOMAIN = False
# Bing 搜索必备变量
# 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search
# 具体申请方式请见
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource
# 使用python创建bing api 搜索实例详见:
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python
BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
# 注意不是bing Webmaster Tools的api key,
# 此外,如果是在服务器上,报Failed to establish a new connection: [Errno 110] Connection timed out
# 是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG
BING_SUBSCRIPTION_KEY = ""
# 是否开启中文标题加强,以及标题增强的相关配置
# 通过增加标题判断,判断哪些文本为标题,并在metadata中进行标记;
# 然后将文本与往上一级的标题进行拼合,实现文本信息的增强。
ZH_TITLE_ENHANCE = False