-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathutils.py
208 lines (161 loc) · 5.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import shutil
import torchvision.transforms as transforms
from torch.autograd import Variable
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0/batch_size))
return res
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def _data_transforms_svhn(args):
SVHN_MEAN = [0.4377, 0.4438, 0.4728]
SVHN_STD = [0.1980, 0.2010, 0.1970]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(SVHN_MEAN, SVHN_STD),
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length,
args.cutout_prob))
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(SVHN_MEAN, SVHN_STD),
])
return train_transform, valid_transform
def _data_transforms_cifar100(args):
CIFAR_MEAN = [0.5071, 0.4865, 0.4409]
CIFAR_STD = [0.2673, 0.2564, 0.2762]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length,
args.cutout_prob))
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
return train_transform, valid_transform
def _data_transforms_cifar10(args):
CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
return train_transform, valid_transform
def count_parameters_in_MB(model):
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name)/1e6
def save_checkpoint(state, is_best, save):
filename = os.path.join(save, 'checkpoint.pth.tar')
torch.save(state, filename)
if is_best:
best_filename = os.path.join(save, 'model_best.pth.tar')
shutil.copyfile(filename, best_filename)
def save(model, model_path):
torch.save(model.state_dict(), model_path)
def load(model, model_path):
model.load_state_dict(torch.load(model_path))
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1.-drop_prob
mask = Variable(torch.cuda.FloatTensor(x.size(0), 1, 1, 1).bernoulli_(keep_prob))
x.div_(keep_prob)
x.mul_(mask)
return x
def create_exp_dir(path, scripts_to_save=None):
if not os.path.exists(path):
os.mkdir(path)
print('Experiment dir : {}'.format(path))
if scripts_to_save is not None:
os.mkdir(os.path.join(path, 'scripts'))
for script in scripts_to_save:
dst_file = os.path.join(path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)
def process_step_vector(x, method, mask, tau=None):
if method == 'softmax':
output = F.softmax(x, dim=-1)
elif method == 'dirichlet':
output = torch.distributions.dirichlet.Dirichlet(
F.elu(x) + 1).rsample()
elif method == 'gumbel':
output = F.gumbel_softmax(x, tau=tau, hard=False, dim=-1)
if mask is None:
return output
else:
output_pruned = torch.zeros_like(output)
output_pruned[mask] = output[mask]
output_pruned /= output_pruned.sum()
assert (output_pruned[~mask] == 0.0).all()
return output_pruned
def process_step_matrix(x, method, mask, tau=None):
weights = []
if mask is None:
for line in x:
weights.append(process_step_vector(line, method, None, tau))
else:
for i, line in enumerate(x):
weights.append(process_step_vector(line, method, mask[i], tau))
return torch.stack(weights)
def prune(x, num_keep, mask, reset=False):
if not mask is None:
x.data[~mask] -= 1000000
src, index = x.topk(k=num_keep, dim=-1)
if not reset:
x.data.copy_(torch.zeros_like(x).scatter(dim=1, index=index, src=src))
else:
x.data.copy_(torch.zeros_like(x).scatter(dim=1, index=index, src=1e-3*torch.randn_like(src)))
mask = torch.zeros_like(x, dtype=torch.bool).scatter(
dim=1, index=index, src=torch.ones_like(src,dtype=torch.bool))
return mask