相关推荐:
读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:
-----------
今天就聊一道很看起来简单却十分巧妙的问题,寻找缺失和重复的元素。之前的一篇文章「寻找缺失元素」也写过类似的问题,不过这次的和上次的问题使用的技巧不同。
这是 LeetCode 645 题,我来描述一下这个题目:
给一个长度为 N
的数组 nums
,其中本来装着 [1..N]
这 N
个元素,无序。但是现在出现了一些错误,nums
中的一个元素出现了重复,也就同时导致了另一个元素的缺失。请你写一个算法,找到 nums
中的重复元素和缺失元素的值。
// 返回两个数字,分别是 {dup, missing}
vector<int> findErrorNums(vector<int>& nums);
比如说输入:nums = [1,2,2,4]
,算法返回 [2,3]
。
其实很容易解决这个问题,先遍历一次数组,用一个哈希表记录每个数字出现的次数,然后遍历一次 [1..N]
,看看那个元素重复出现,那个元素没有出现,就 OK 了。
但问题是,这个常规解法需要一个哈希表,也就是 O(N) 的空间复杂度。你看题目给的条件那么巧,在 [1..N]
的几个数字中恰好有一个重复,一个缺失,事出反常必有妖,对吧。
O(N) 的时间复杂度遍历数组是无法避免的,所以我们可以想想办法如何降低空间复杂度,是否可以在 O(1) 的空间复杂度之下找到重复和确实的元素呢?
这个问题的特点是,每个元素和数组索引有一定的对应关系。
我们现在自己改造下问题,暂且将 nums
中的元素变为 [0..N-1]
,这样每个元素就和一个数组索引完全对应了,这样方便理解一些。
如果说 nums
中不存在重复元素和缺失元素,那么每个元素就和唯一一个索引值对应,对吧?
现在的问题是,有一个元素重复了,同时导致一个元素缺失了,这会产生什么现象呢?会导致有两个元素对应到了同一个索引,而且会有一个索引没有元素对应过去。
那么,如果我能够通过某些方法,找到这个重复对应的索引,不就是找到了那个重复元素么?找到那个没有元素对应的索引,不就是找到了那个缺失的元素了么?
那么,如何不使用额外空间判断某个索引有多少个元素对应呢?这就是这个问题的精妙之处了:
通过将每个索引对应的元素变成负数,以表示这个索引被对应过一次了:
如果出现重复元素 4
,直观结果就是,索引 4
所对应的元素已经是负数了:
对于缺失元素 3
,直观结果就是,索引 3
所对应的元素是正数:
对于这个现象,我们就可以翻译成代码了:
vector<int> findErrorNums(vector<int>& nums) {
int n = nums.size();
int dup = -1;
for (int i = 0; i < n; i++) {
int index = abs(nums[i]);
// nums[index] 小于 0 则说明重复访问
if (nums[index] < 0)
dup = abs(nums[i]);
else
nums[index] *= -1;
}
int missing = -1;
for (int i = 0; i < n; i++)
// nums[i] 大于 0 则说明没有访问
if (nums[i] > 0)
missing = i;
return {dup, missing};
}
这个问题就基本解决了,别忘了我们刚才为了方便分析,假设元素是 [0..N-1]
,但题目要求是 [1..N]
,所以只要简单修改两处地方即可得到原题的答案:
vector<int> findErrorNums(vector<int>& nums) {
int n = nums.size();
int dup = -1;
for (int i = 0; i < n; i++) {
// 现在的元素是从 1 开始的
int index = abs(nums[i]) - 1;
if (nums[index] < 0)
dup = abs(nums[i]);
else
nums[index] *= -1;
}
int missing = -1;
for (int i = 0; i < n; i++)
if (nums[i] > 0)
// 将索引转换成元素
missing = i + 1;
return {dup, missing};
}
其实,元素从 1 开始是有道理的,也必须从一个非零数开始。因为如果元素从 0 开始,那么 0 的相反数还是自己,所以如果数字 0 出现了重复或者缺失,算法就无法判断 0 是否被访问过。我们之前的假设只是为了简化题目,更通俗易懂。
对于这种数组问题,关键点在于元素和索引是成对儿出现的,常用的方法是排序、异或、映射。
映射的思路就是我们刚才的分析,将每个索引和元素映射起来,通过正负号记录某个元素是否被映射。
排序的方法也很好理解,对于这个问题,可以想象如果元素都被从小到大排序,如果发现索引对应的元素如果不相符,就可以找到重复和缺失的元素。
异或运算也是常用的,因为异或性质 a ^ a = 0, a ^ 0 = a
,如果将索引和元素同时异或,就可以消除成对儿的索引和元素,留下的就是重复或者缺失的元素。可以看看前文「寻找缺失元素」,介绍过这种方法。
_____________
刷算法,学套路,认准 labuladong,公众号和 在线电子书 持续更新最新文章。
本小抄即将出版,微信扫码关注公众号,后台回复「小抄」限时免费获取,回复「进群」可进刷题群一起刷题,带你搞定 LeetCode。
======其他语言代码======zhuli提供的Java代码:
class Solution {
public int[] findErrorNums(int[] nums) {
int n = nums.length;
int dup = -1;
for (int i = 0; i < n; i++) {
// 元素是从 1 开始的
int index = Math.abs(nums[i]) - 1;
// nums[index] 小于 0 则说明重复访问
if (nums[index] < 0)
dup = Math.abs(nums[i]);
else
nums[index] *= -1;
}
int missing = -1;
for (int i = 0; i < n; i++)
// nums[i] 大于 0 则说明没有访问
if (nums[i] > 0)
// 将索引转换成元素
missing = i + 1;
return new int[]{dup, missing};
}
}
/**
* @param {number[]} nums
* @return {number[]}
*/
var findErrorNums = function (nums) {
let n = nums.length;
let dup = -1;
for (let i = 0; i < n; i++) {
// 现在的元素是从1开始的
let index = Math.abs(nums[i]) - 1;
if (nums[index] < 0) {
dup = Math.abs(nums[i]);
} else {
nums[index] *= -1;
}
}
let missing = -1;
for (let i = 0; i < n; i++) {
if (nums[i] > 0) {
// 将索引转换成元素
missing = i + 1;
}
}
return [dup, missing]
};